
-- --

PEX Protocol Specification

Version 5.0P - X PUBLIC REVIEW DRAFT |

14-September-1990 |

PEX Document Editor
Sally C. Barry Digital Equipment Corp. |

Past PEX Document Editor |
Randi J. Rost Digital Equipment Corp. |

PEX Architecture Team
Jeffrey Friedberg Digital Equipment Corp.
Dave Gorgen Hewlett-Packard Company
Tom Gross Hewlett-Packard Company
Jan Hardenbergh Stardent Computer, Inc. |
Marty Hess Sun Microsystems
John McConnell Digital Equipment Corp.
Pete Nishimoto Digital Equipment Corp.
David Plunkett Solbourne Computer
Randi J. Rost Digital Equipment Corp.
Jeffrey S. Saltz Digital Equipment Corp.
Jeff Stevenson Hewlett-Packard Company
Jim Van Loo Sun Microsystems



-- --

|

Copyright ¶ 1988, 1989, 1990, Massachusetts Institute of Technology
All rights reserved.

Permission to use, copy, modify, and distribute this document for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this permission
notice are retained, and that the name of M.I.T. not be used in advertising or publicity pertaining to this document
without specific, written prior permission. M.I.T. makes no representations about the suitability of this document or
the protocol defined in this document for any purpose. It is provided "as is" without express or implied warranty.

PEX Version 5.0P, 14-September-1990



-- --

1. Acknowledgements

On behalf of the M.I.T. X Consortium, we would like to thank all who have participated in the design, definition,
and implementation of PEX.

This work began when, at the first X3D meeting at MIT in June, 1987, Digital Equipment Corporation and Sun
Microsystems, Inc. jointly proposed that a protocol be defined based upon an initial working draft developed by
Digital. This draft was influenced by comments from professional colleagues. We recognize especially the authors
of that first document: Randi J. Rost, Jeffrey Friedberg, Jeffrey S. Saltz, Pete Nishimoto, and William H. Clifford,
Jr., all of Digital Equipment Corporation. They provided a head start for this major undertaking.

We owe a major debt to the PEX architecture team which has met frequently since June, 1987 to argue and debate
issues. Members of the PEX Architecture Team, past and present, are listed on the title page.

Our sincerest thanks are also extended to Bertram Herzog of the University of Michigan, who served as chairman of
the X3D organization and was responsible for overseeing a fair and timely process designed to bring the PEX
project to fruition.

Several members of the X3D group provided valuable comments to the PEX architecture team. We note especially
the contributions of James Michener of Hewlett-Packard Company, and Todd Newman and Raymond Drewry of
Digital Equipment Corporation who attended architecture team meetings and provided much-needed insight at
critical points during the evolution of PEX. Others who have participated actively in technical discussions include
Sally C. Barry, Andy Vesper, and Ray Shapiro of Digital Equipment Corporation.

We also give thanks to early implementors of PEX, including the PEX Sample Implementation team at Sun
Microsystems, for providing useful review and sanity checks of the PEX specification documents. The PEX-SI
team at Sun includes Marty Hess, Lisa Chabot, Cheryl Huntington, Erwin Hom, Nash Aragam, Tom Gaskins, John |
Recker, and Chris Nicholas.

Robert Scheifler, Director of the X Consortium at M.I.T., provided invaluable critique and advice that ensured that
our efforts conformed to the spirit and definition of the X Window System. Jim Fulton of the X Consortium also
contributed to meetings and to technical discussions.

To Randi Rost, the first PEX Document Editor, go the thanks of all, for translating all the decisions into the written |
word. Sally Barry and Jeff Friedberg are gratefully acknowledged for providing thorough and painstaking review of
many intermediate drafts of the earlier PEX specification documents. |

Sally Barry, the current PEX Document Editor, gratefully acknowledges the invaluable assistance and |
encouragement of Jeff Friedberg, Jan Hardenbergh, and Randi Rost. It isn’t as easy as it looks. The careful review |
by the PEX teams at all the various companies that are working on PEX implementations has greatly helped the |
accuracy and precision of this document. |

Thanks also to the individuals that worked on the X11, PHIGS, and PHIGS+ specification documents, from which
some PEX descriptions were obtained.

Finally, we acknowledge the contributions of all of the other participants in this effort that have not been explicitly
named. The contributions of so many individuals has helped to ensure that PEX will be a useful and long-lived
extension to the X Window System.

PEX Version 5.0P, 14-September-1990



-- --

-2-

2. PEX Protocol Specification

2.1. Protocol Format

All PEX† protocol formats are based on the formats specified by the X Window System Protocol, Version 11‡,
which is referred to as X11 throughout the remainder of this document. The PEX protocol will adhere to the
philosophy and requirements of X11.

2.1.1. Request Format

Every X11 request contains a 4-byte header which contains an 8-bit major opcode, an 8-bit data field, and a 16-bit
length field. The header is followed by zero or more additional bytes of data, the length of which is specified by the
length field. Since PEX is a proper extension of X11, the 8-bit major opcode contains the opcode assigned for the
PEX extension by X11. The length field contains the length of the request in units of four bytes, including the
header. The data (or minor opcode) field contains the PEX opcode for this request.

2.1.2. Reply Format

Every reply consists of at least 32 bytes. A header is contained in these 32 bytes. The header of a reply consists of
a 32-bit length field, a 16-bit sequence number field, and an 8-bit type field. Zero or more additional bytes follow
the header as specified in the length field. The length field specifies the length of the data following the 32 byte
reply header and is in units of four bytes. Unused bytes within a reply are not guaranteed to be zero. The sequence
number field contains the least significant 16 bits of the sequence number of the corresponding request. The type
field defines the type of reply generated.

2.1.3. Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. This error code is used to signify the
specific PEX error that occurred. Every error reply also includes the major opcode (the extension reporting the error
is identified by the major opcode), the minor opcode (the extension opcode which caused the error), and the least
significant 16 bits of the sequence number of the request which had failed. Also included is an 8-bit type field
which designates the packet as being an error packet. Unused bytes within an error are not guaranteed to be zero.

2.1.4. Event Format

Events are 32 bytes long. Every event contains an 8-bit type code. The most significant bit in this field is set if the
event was generated from a SendEvent request. Event codes 64-127 are reserved for extensions. The core X11
protocol does not define a mechanism for expressing interest in events generated by extensions.

† X3D-PEX and PEX are trademarks of the Massachusetts Institute of Technology

‡"X Window System" is a trademark of the Massachusetts Institute of Technology

PEX Version 5.0P, 14-September-1990



-- --

-3-

2.2. Syntax

Curly braces {...} enclose a set of alternatives. Square brackets [...] enclose a list of structure components. When
embedded in descriptions, request names are printed in boldface (e.g., PEXCreateStructure). Request parameters
are lower case, use the underscore (_) for separation, and are printed in italics (e.g., item_mask). Defined constants,
registered enumerated type mnemonics, or alternative values have an initial capital letter, may use capital letters for
separation, and are printed in italics (e.g., RGBFloat). Defined types are printed in all caps, use the underscore for
separation, and are printed in the standard font (e.g., COORD_3D).

Requests are described as follows:

Name:
PEXSampleRequest

Request:
arg1 : type1
argN : typeN

Reply:
result1 : type1
resultM : typeM

Errors:
kind1,..., kindK

Description:

Functional description goes here

If no reply description is given, then the request has no reply (it is asynchronous), but errors may still be reported.

2.3. Naming Conventions

PEX requests use a consistent naming convention. The verbs that are commonly used in request names are
described here.

Create Create an instance of a resource
Free Mark a resource as no longer accessible by clients, and deallocate the system

resources it uses (e.g. memory) if it is not referenced by any other resources
Copy Copy attributes from one resource to another of the same type
Get Return resource attributes from the server to the client
Change Modify attributes of a resource
Set Modify a selected attribute of a resource
Destroy Remove an instance of a resource and all references to it, and deallocate

the memory associated with it
Delete Remove some portion of a resource
Fetch Return structure elements from the server to the client
Store Send structure elements from the client to a structure resource in the server
Begin Perform an initialization step of some kind
End Perform a termination step of some kind

PEX Version 5.0P, 14-September-1990



-- --

-4-

2.4. Common Types

The types listed in this section define the common types used in the PEX protocol specification.

2.4.1. LISTofFOO

A type name of the form LISTofFOO means a counted list of elements of type FOO; the size of the length field may
vary (it is not necessarily the same size as FOO). In cases where the number of items in the list is easily computed,
the number of items may not be supplied. In all other cases in the PEX protocol (except for LISTofVALUE), the
length field is explicit.

2.4.2. BITMASK and LISTofVALUE

The types BITMASK and LISTofVALUE are somewhat special. Various requests contain arguments of the form:

item_mask : BITMASK |
item_list : LISTofVALUE |

used to allow the client to specify a subset of a heterogeneous collection of "arguments". The item_mask specifies
which arguments are to be provided; each such argument is assigned a unique bit position. The representation of
BITMASK may contain more bits than there are defined arguments; unused bits in the item_mask must be zero (or |
the extension will generate a Value error). The item_list contains one item for each one bit in the mask, from least
to most significant bit in the mask.

2.4.3. Floating Point Format - FLOAT

The PEX protocol allows floating-point values to be passed in various floating-point formats. All floating-point
arguments will be specified as FLOAT, which is defined to be the floating-point type contained in the format word
associated with the request. Furthermore, items such as MATRIX, VECTOR, and COORD will be in the floating-
point format specified by the format word associated with the request.

2.4.4. Colors

In PEX, colors are typically passed as a color type and a value. The color type specifies whether the color is an
index value or a direct color value of some type. PEX servers are required to be able to deal with indexed colors
and at least one type of direct color. Indexed colors are specified using an index which is used to obtain the color
from a color lookup table. Direct colors are specified directly as RGB, HSV, HLS, or CIELUV color values of
some form. The list of registered direct color formats can be found in the "Extension Information" section. PEX
servers are free to store direct color values in whatever implementation-dependent format they choose, but they
must be capable of converting those values back into the originally-specified color type when queried by the client.

2.4.5. Element Types

Chapter 3 describes the set of output commands that are recognized by a PEX implementation. These output
commands are distinguished by a 16-bit ELEMENT_TYPE value. This value contains a 16-bit unsigned short that
defines the actual type of output command. The high-order bit of the element type is used to signify whether the
output command is a standard PEX output command (high-order bit equals zero) or whether the output command is
a proprietary addition to the set of standard PEX output commands. Servers are expected to be able to create
structure elements containing non-standard PEX output commands, but the execution of such output commands can
be a no-op. Since the contents of these output commands is unknown, no floating-point conversions or byte- |
swapping will be performed on non-standard output commands that are not supported by the server. Unlike the use
of the PHIGS-style GSE and GDP output commands, this extension mechanism allows vendors to gracefully add
fully-integrated functionality to the standard PEX extension, and permits an implementation to ignore output
commands with which it is not familiar.

PEX Version 5.0P, 14-September-1990



-- --

-5-

2.4.6. Types

The PEX Protocol types are as follows:

ASF_ATTRIBUTE : {MarkerTypeASF, MarkerScaleASF, MarkerColorASF,
TextFontIndexASF, TextPrecASF, CharExpansionASF,
CharSpacingASF, TextColorASF, LineTypeASF,
LineWidthASF, LineColorASF, CurveApproxASF,
PolylineInterpASF, InteriorStyleASF, InteriorStyleIndexASF,
SurfaceColorASF, SurfaceInterpASF, ReflectionModelASF,
ReflectionAttrASF, BFInteriorStyleASF, BFInteriorStyleIndexASF,
BFSurfaceColorASF, BFSurfaceInterpASF, BFReflectionModelASF,
BFReflectionAttrASF, SurfaceApproxASF, SurfaceEdgesASF,
SurfaceEdgeTypeASF, SurfaceEdgeWidthASF, SurfaceEdgeColorASF}

ASF_SPECIFIER : [enables, asfs : BITMASK]
ASF_VALUE : {Bundled, Individual}
ATEXT_STYLE : ENUM_TYPE_INDEX (used with ATextStyle enumerated type)
BITMASK : CARD32
BOOLEAN : {False, True}
BUFFER_MODE : {Single, Double}
CARD8 : unsigned 8-bit integer
CARD16 : unsigned 16-bit integer
CARD32 : unsigned 32-bit integer
CHARACTER : {CARD8, CARD16, CARD32}
COLOR : {TABLE_INDEX, DIRECT_COLOR†}
CLIP_INDICATOR : {Clip, NoClip} |
COLOR_APPROX_MODEL : ENUM_TYPE_INDEX (used with ColorApproxModel enumerated type)
COLOR_APPROX_TYPE : ENUM_TYPE_INDEX (used with ColorApproxType enumerated type)
COLOR_MODEL : ENUM_TYPE_INDEX (used with RenderingColorModel enumerated type)
COLOR_SPECIFIER : [color_type : COLOR_TYPE,

color_value : COLOR]
COLOR_TYPE : ENUM_TYPE_INDEX (used with ColorType enumerated type)
COMPOSITION : {PreConcatenate, PostConcatenate, Replace}
CONSTANT_NAME : CARD16
CONTOUR : {Disjoint, Nested, Intersecting, Unknown}
COORD : {COORD_2D, COORD_3D, COORD_4D}
COORD_2D : [x, y : FLOAT]
COORD_3D : [x, y, z : FLOAT]
COORD_4D : [x, y, z, w : FLOAT]
COORD_TYPE : {Rational, NonRational}
CULL_MODE : {None, BackFaces, FrontFaces}
CURVE_APPROX : [approx_method : CURVE_APPROX_METHOD,

tolerance : FLOAT]
CURVE_APPROX_METHOD : ENUM_TYPE_INDEX (used with CurveApproxMethod enumerated type)
DEVICE_COORD : [x, y : INT16, z : FLOAT]
DEVICE_COORD_2D : [x, y : INT16]
DEVICE_RECT : [xmin, ymin, xmax, ymax : INT16]
DIRECT_COLOR : direct color value†
DISPLAY_STATE : {NotEmpty, Empty}
DISPLAY_UPDATE : ENUM_TYPE_INDEX (used with DisplayUpdateMode enumerated type)

† See the "Extension Information" section for a list of the registered color types.

PEX Version 5.0P, 14-September-1990



-- --

-6-

DRAWABLE_ID : {WINDOW_ID, PIXMAP_ID}
DYNAMIC_TYPE : {IMM, IRG, CBS}
EDGE : OPT_SWITCH
EDIT_MODE : {StructureInsert, StructureReplace}
ELEMENT_INFO : [type : ELEMENT_TYPE,

length : CARD16]
ELEMENT_POS : [whence : {Beginning, Current, End},

offset : INT32]
ELEMENT_RANGE : [position1, position2 : ELEMENT_POS]
ELEMENT_REF : [structure_id : STRUCTURE_ID,

offset : CARD32]
ELEMENT_TYPE : CARD16
ENUM_TYPE : {MarkerType, ATextStyle, InteriorStyle, HatchStyle,

LineType, SurfaceEdgeType, PickDeviceType,
PolylineInterpMethod, CurveApproxMethod, ReflectionModel,
SurfaceInterpMethod, SurfaceApproxMethod,
ModelClipOperator, LightType, ColorType,
FloatFormat, HLHSRMode, PromptEchoType,
DisplayUpdateMode, ColorApproxType, ColorApproxModel,
GDP, GDP3, GSE, TrimCurveApproxMethod,
RenderingColorModel, ParametricSurfaceCharacteristics}

ENUM_TYPE_INDEX : INT16
EXTENT_INFO : [lower_left : COORD_2D,

upper_right : COORD_2D,
concatpoint : COORD_2D]

FACET : [facet_data : OPT_DATA,
vertices : LISTofVERTEX]

FLOAT : floating point value†
FLOAT_FORMAT : ENUM_TYPE_INDEX (used with FloatFormat enumerated type)
FONT_ID : {PEX_FONT_ID, X11_FONT_ID}
HALFSPACE : [point : COORD_3D,

vector : VECTOR_3D]
HALFSPACE_2D : [point : COORD_2D,

vector : VECTOR_2D]
HATCH_STYLE : ENUM_TYPE_INDEX (used with HatchStyle enumerated type)
HLHSR_MODE : ENUM_TYPE_INDEX (used with HLHSRMode enumerated type)
INT8 : signed 8-bit integer
INT16 : signed 16-bit integer
INT32 : signed 32-bit integer
INTERIOR_STYLE : ENUM_TYPE_INDEX (used with InteriorStyle enumerated type)
ISTRING : LISTofMONO_ENCODING
LIGHT_TYPE : ENUM_TYPE_INDEX (used with LightType enumerated type)
LINE_TYPE : ENUM_TYPE_INDEX (used with LineType enumerated type)
LOOKUP_TABLE_ID : RESOURCE_ID
MARKER_TYPE : ENUM_TYPE_INDEX (used withMarkerType enumerated type)
MATRIX : FLOAT[4][4]‡
MATRIX_3X3 : FLOAT[3][3]‡
MONO_ENCODING : [char_set : CARD16, |

† See the "Extension Information" section for a list of the registered floating point formats.
‡ Matrices are effectively passed as one-dimensional arrays of floating point values. For a 4×4 matrix, the matrix element |
used to represent the x translation value will be the fourth element in the array, the element containing the y translation
value will be the eighth element, etc. 3×3 matrices are handled analogously. |

PEX Version 5.0P, 14-September-1990



-- --

-7-

char_set_width : {csByte, csShort, csLong},
encoding_state : CARD8,
string : LISTofCHARACTER]

NAME : CARD32
NAME_SET_ID : RESOURCE_ID
NAME_SET_PAIR : [incl: NAME_SET_ID,

excl: NAME_SET_ID]
NPC_SUBVOLUME : [min : COORD_3D,

max : COORD_3D]
OPERATOR : ENUM_TYPE_INDEX (used withModelClipOperator enumerated type)
OPT_COLOR : optional COLOR†
OPT_DATA : [color : OPT_COLOR,

normal : OPT_NORMAL,
edge : OPT_SWITCH ]

OPT_NORMAL : optional VECTOR_3D†
OPT_SWITCH : optional SWITCH†
OUTPUT_CMD : [element_type : ELEMENT_TYPE,

size : CARD16,
data : ‡ ]

PC_BITMASK : CARD32[3]
PEX_FONT_ID : RESOURCE_ID
PHIGS_WKS_ID : RESOURCE_ID
PIPELINE_CONTEXT_ID : RESOURCE_ID
PICK_DEVICE_TYPE : ENUM_TYPE_INDEX (used with PickDeviceType enumerated type)
PICK_MEASURE_ID : RESOURCE_ID
PICK_ELEMENT_REF : [s_id : STRUCTURE_ID,

offset : CARD32,
pickid : CARD32]

PIXMAP_ID : RESOURCE_ID
POLYLINE_INTERP : ENUM_TYPE_INDEX (used with PolylineInterpMethod enumerated type)
PROMPT_ECHO_TYPE : ENUM_TYPE_INDEX (used with PromptEchoType enumerated type)
PSC_TYPE : ENUM_TYPE_INDEX (used with ParametricSurfaceCharacteristics

enumerated type)
PSURF_CHAR : [psc_type : PSC_TYPE,

psc_data : LISTofCARD8]
REFLECTION_ATTR : [ambient_coef : FLOAT,

diffuse_coef : FLOAT,
specular_coef : FLOAT,
specular_conc : FLOAT,
transmission_coef : FLOAT,
specular_color : COLOR_SPECIFIER]

REFLECTION_MODEL : ENUM_TYPE_INDEX (used with ReflectionModel enumerated type)
RENDERER_ID : RESOURCE_ID
RENDERER_STATE : {Rendering, Idle}
RESOURCE_ID : 32-bit identifier
SEARCH_CONTEXT_ID : RESOURCE_ID
SHAPE : {Convex, Nonconvex, Complex, Unknown}
STRING : LISTofCARD8

† Indicates a parameter (or portion of a parameter) that may or may not be present in the request. However, its presence or
absence can always be inferred from previous parameters in the request.
‡ See Section 3 - Output Commands for a description of each of the data records that can be passed/returned as an output
command.

PEX Version 5.0P, 14-September-1990



-- --

-8-

STRUCTURE_ID : RESOURCE_ID
STRUCTURE_INFO : [id: RESOURCE_ID,

priority: FLOAT]
SURFACE_APPROX : [approx_method : SURFACE_APPROX_METHOD,

u_tolerance, v_tolerance : FLOAT]
SURFACE_APPROX_METHOD : ENUM_TYPE_INDEX (used with SurfaceApproxMethod enumerated type)
SURFACE_EDGE_TYPE : ENUM_TYPE_INDEX (used with SurfaceEdgeType enumerated type)
SURFACE_INTERP : ENUM_TYPE_INDEX (used with SurfaceInterpMethod enumerated type)
SWITCH : {Off, On}
TABLE_ENTRY : [data : * ]
TABLE_INDEX : CARD16
TABLE_TYPE : {LineBundle, MarkerBundle, TextBundle, InteriorBundle,

EdgeBundle, Pattern, TextFont, Color, View, Light,
DepthCue, ColorApprox}

TEXT_ALIGNMENT : [vertical : TEXT_VALIGNMENT,
horizontal : TEXT_HALIGNMENT]

TEXT_HALIGNMENT : {HalignNormal, HalignLeft, HalignRight, HalignCenter}
TEXT_PATH : {PathRight, PathLeft, PathUp, PathDown}
TEXT_PRECISION : {String, Char, Stroke}
TEXT_VALIGNMENT : {ValignNormal, ValignTop, ValignCap, ValignHalf,

ValignBase, ValignBottom}
TRIM_CURVE : [visibility : SWITCH,

order : CARD16,
type : COORD_TYPE,
approx_method : TRIM_CURVE_APPROX_METHOD,
tolerance : FLOAT,
tmin, tmax : FLOAT,
knots : LISTofFLOAT,
points : LISTofCOORD]

TRIM_CURVE_APPROX_METHOD : ENUM_TYPE_INDEX (used with TrimCurveApproxMethod
enumerated type)

TYPE_OR_TABLE_INDEX : {ENUM_TYPE_INDEX, TABLE_INDEX}
UPDATE_STATE : {NotPending, Pending}
VECTOR_2D : [x, y : FLOAT]
VECTOR_3D : [x, y, z : FLOAT]
VERTEX : [point : COORD_3D,

data : OPT_DATA]
VIEWPORT : [min : DEVICE_COORD,

max : DEVICE_COORD,
use_drawable : BOOLEAN]

VIEW_REP : [index : TABLE_INDEX,
clip_flags : BITMASK,
clip_limits : NPC_SUBVOLUME,
orientation : MATRIX,
mapping : MATRIX]

VISUAL_STATE : {Correct, Deferred, Simulated}
WINDOW_ID : RESOURCE_ID
WKS_BITMASK : CARD32[2]
X11_FONT_ID : RESOURCE_ID

* See the section "Lookup Tables" for a description of each of the data records that can be passed/returned as a table entry.

PEX Version 5.0P, 14-September-1990



-- --

-9-

2.4.7. Errors

The PEX Protocol uses the same set of error codes as the X11 Protocol when applicable. Additional error codes are
provided for PEX-specific errors. The following error codes can be returned by the various PEX requests:

ColorType
The specified color type is not supported.

FloatingPointFormat
The specified floating point format is not supported.

Label
The specified label does not exist in the structure.

LookupTable
A value for a lookup table argument is illegal or does not name a defined lookup table resource.

NameSet
A value for a name set argument is illegal or does not name a defined name set resource.

OutputCommand
A value for some parameter of an output command is illegal, out of range, or otherwise inappropriate.

Path
A value for a structure network path contains inappropriate or illegal values.

PEXFont
A value for a PEX font argument is illegal or does not name a defined PEX font resource.

PhigsWKS
A value for a PHIGS workstation argument is illegal or does not name a defined PHIGS workstation resource.

PickMeasure
A value for a pick measure argument is illegal or does not name a defined pick measure resource.

PipelineContext
A value for a pipeline context argument is illegal or does not name a defined pipeline context resource.

Renderer
A value for a renderer argument is illegal or does not name a defined renderer resource.

RendererState
A renderer was in the Rendering state when a PEXBeginRendering request was received.

SearchContext
A value for a search context argument is illegal or does not name a defined search context resource.

Structure
A value for a structure argument is illegal or does not name a defined structure resource.

2.5. Events

All PEX events will use the same mechanisms as X events. PEX does not introduce any new X events.

2.6. Padding

Certain values that must line up on 2- or 4-byte boundaries may necessitate the insertion of pad bytes in some
requests. The value of pad bytes is undefined.

PEX Version 5.0P, 14-September-1990



-- --

-10-

2.7. Extension Information

These requests return static information about the PEX extension and what it supports. Information about specific
capabilities and tradeoffs should be found in the documentation describing a particular PEX server implementation
(e.g., what is the "best" HLHSR method or floating point format or direct color format to use, whether quick update
really does anything, what range of line and surface edge widths are supported, etc.)

2.7.1. Get Extension Information

Name:
PEXGetExtensionInfo

Request:
client_protocol_major_version : CARD16
client_protocol_minor_version : CARD16

Reply:
protocol_major_version : CARD16
protocol_minor_version : CARD16
vendor : STRING
release_number : CARD32
subset_info : CARD32

Errors:
None

Description:

The client_protocol_major_version and the client_protocol_minor_version indicate what version of the
protocol the client expects the server to implement. The protocol version numbers returned indicate the
protocol the PEX extension actually supports. This might not equal the version sent by the client. A PEX
extension can (but need not) support more than one version simultaneously. The protocol_major_version
and the protocol_minor_version are a mechanism to support future revisions of the PEX protocol which
may be necessary. In general, the major version would increment for incompatible changes, and the minor
version would increment for small, upward-compatible changes. Servers that support the protocol defined
in this document will return a protocol_major_version of five, and a protocol_minor_version of zero. The
vendor parameter is a string of ISO-LATIN1 characters that describes the vendor that supplied the PEX
extension. The release number is a 32-bit value whose semantics are controlled by the vendor. Subset_info
contains information about whether the PEX server is a full PEX implementation or one of the defined
standard subsets. The top 16 bits of this 32-bit value are reserved for use by vendors. The bottom 16 bits
contain information about how fully the PEX extension implementation supports the PEX protocol. Only
two standard PEX subsets are currently defined. If the 16 low-order bits of subset_info are zero, the
extension can be assumed to be a complete PEX implementation. If the lowest-order bit of subset_info is a
one, then the PEX extension is an "immediate rendering only" implementation. If the next-to-lowest-order
bit of subset_info is a one, then the PEX extension is a "PHIGS workstation only" implementation. A PEX
implementation is not allowed to return with both of these bits set. If a server is sent a request that is not in |
the PEX subset supported by that server, it will return a Request error. See Appendix A for the definition
of "immediate rendering only" and "PHIGS workstation only" subsets.

The string "X3D-PEX" should be returned by the X request ListExtensions to indicate the presence of the
PEX extension. The same string should be used by clients in the X request QueryExtension.

PEX Version 5.0P, 14-September-1990



-- --

-11-

2.7.2. Get Enumerated Type Information

Name:
PEXGetEnumeratedTypeInfo

Request:
drawable_id : DRAWABLE_ID
enum_types : LISTofENUM_TYPE
item_mask : BITMASK

Reply:
types : LISTofLISTofVALUE

Errors:
Drawable, Value

Description:

This request returns information about the enumerated types specified by enum_types. It returns
information about the enumerated types that are supported for drawables that have the same root window
and depth as the drawable indicated by drawable_id. The item_mask indicates the data that is to be
returned to describe each enumerated type. The components of an enumerated type descriptor (and the
corresponding bits of item_mask) are:

index : ENUM_TYPE_INDEX
mnemonic : STRING

If only the index bit is set in item_mask, a list of index values (type ENUM_TYPE_INDEX) will be
returned for the defined values for each enumerated type specified in the enum_types list. If only the
mnemonic bit is set in item_mask, only descriptor strings that use the ISO-Latin1 encoding will be returned
for the defined values (type STRING). If both the index and mnemonic bits are set, an index/mnemonic
pair will be returned for each of the defined values for each of the requested enumerated types. If neither
bit is set, a list of counts will be returned, where each count represents the number of supported types for
each entry in enum_types.

The various enumerated types and registered values are listed below. Each registered value is followed by
the mnemonic string that is returned and a brief description. Strings are returned using the ISO-Latin1
character set. The strings are returned exactly as shown below. Any enumerated type values less than zero
are implementation-dependent (consult the implementation documentation for their descriptions), and any
numbers greater than the listed values are reserved for future registration.

MarkerType
The marker type specifies the shape of the marker primitive that is to be drawn when rendering
marker primitives. The registered values are:

1 Dot "." which is always displayed as the smallest displayable
dot (the marker_scale attribute is ignored) with the dot
at the marker position.

2 Cross "+" (cross or plus sign) with intersection at the marker position.
3 Asterisk "*" with intersection at the marker position.
4 Circle "o" with center at marker position.
5 X "x" with intersection at the marker position.

ATextStyle
The annotation text style specifies the style that is to be used when rendering annotation text

PEX Version 5.0P, 14-September-1990



-- --

-12-

primitives. The registered values are:

1 NotConnected The annotation text primitive will be drawn with no
line connecting it to the annotation text reference point.

2 Connected The annotation text primitive will be connected to |
the annotation text reference point with a line, which will be
drawn using the current set of line attributes.

InteriorStyle
The interior style specifies the style that is to be used when rendering surface primitives. The
registered values are:

1 Hollow The interiors of surface primitives are not filled, but the
boundary is drawn using the surface color. If the surface
primitive is clipped as a result of modeling, view, or workstation
clipping, the boundary must be drawn along the clipped boundary
as well.

2 Solid The interiors of surface primitives are filled using the |
surface color.

3 Pattern The interiors of surface primitives are filled using the |
pattern table entry specified by the interior style index.

4 Hatch The interiors of surface primitives are filled using the |
surface color and the hatch style whose index is specified
by the interior style index.

5 Empty The interior of the surface primitive is not drawn at all. |

HatchStyle
The hatch style specifies the method that is to be used to render surface primitives when the interior
style is set to Hatch. There are currently no registered hatch styles.

LineType
The line type specifies the style that is to be used when rendering polyline and curve primitives. The
registered values are:

1 Solid Draw the polyline or curve with a solid, unbroken line.
2 Dashed Draw the polyline or curve with a line that is dashed.
3 Dotted Draw the polyline or curve with a line that is dotted.
4 DashDot Draw the polyline or curve with a line that contains

alternating dots and dashes.

It is implementation-dependent whether the sequence for the Dashed, Dotted, and DashDot line
types is restarted or continued at the start of the polyline, at the start of a clipped segment of a
polyline, and at each vertex of a polyline.

SurfaceEdgeType
The surface edge type specifies the style that is to be used when rendering surface edges. The
registered values are:

PEX Version 5.0P, 14-September-1990



-- --

-13-

1 Solid Draw the surface edge with a solid, unbroken line.
2 Dashed Draw the surface edge with a line that is dashed.
3 Dotted Draw the surface edge with a line that is dotted.
4 DashDot Draw the surface edge with a line that contains alternating

dots and dashes.

It is implementation-dependent whether the sequence for the Dashed, Dotted, and DashDot edge
types is restarted or continued at the start of the edge, at the start of a clipped segment of an edge,
and at each vertex.

PickDeviceType
The pick device type specifies the type of pick device that is to be used to perform picking
operations. The registered values are:

1 DC_HitBox The pick measure input data record specified to |
PEXUpdatePickMeasure for this pick device type, |
contains a pick position and a pick distance, both in |
device coordinates, that define the picking aperture. |
The shape of the hit box (square, circle, etc.) is |
implementation-dependent. The pick distance defines the |
half-width or radius of the hit box. The pick_data_rec |
component in the pick device descriptor is ignored for this |
pick device type. The default prompt and echo type for a |
pick device of this type is EchoPrimitive. |

2 NPC_HitVolume The pick measure input data record specified to |
PEXUpdatPickMeasure for this pick device type, |
contains a pick volume. This pick volume specifies the |
picking aperture as two points that describe a parallelpiped |
in NPC space. Any graphics intersecting with the volume |
will be selected. The pick_data_rec component in |
the pick device descriptor is ignored for this pick device type. |
The default prompt and echo type for a pick device of this |
type is EchoPrimitive. |

PolylineInterpMethod
The polyline interpolation method specifies the style that is to be used when rendering polyline
primitives that have colors specified per-vertex. Depth-cueing is applied as a post-process to
polylines regardless of the polyline interpolation method. The registered values are:

1 None No interpolation will be performed between polyline vertices.
If color values are supplied that differ for the endpoints
of a polyline segment, it is implementation-dependent whether
the color of the ith vertex will be used to draw the
line between the ith and (i+1)th vertices (if n
is the number of vertices, the color at the nth will be
ignored), or whether they will be used to compute an average
color which will be used for the entire segment.

2 Color The polyline’s vertex colors (if present) are used. Color
values along each polyline segment are then computed by
linearly interpolating between the color values at the
vertices.

PEX Version 5.0P, 14-September-1990



-- --

-14-

CurveApproxMethod
The curve approximation method specifies the method that is to be used when rendering non-uniform
rational B-spline (NURB) curve primitives. The registered values are:

1 (imp. dep.) This value for CurveApproxMethod is supported on
every implementation, but may differ from one to the next.
It may have the same mnemonic and definition as one of the
other types, or it may be a method that is not in the list
of registered types.

2 ConstantBetweenKnots This technique tessellates the curve with equal parametric
increments between successive pairs of knots. The tolerance
value controls tesselation of the curve. If the tolerance
value is not an integer value, it is truncated and only the
integer portion will be used. If tolerance is less than
or equal to zero, the curve will be evaluated only at the
parameter limits, and at the knots that are within the specified
parameter range. If tolerance is greater than zero, the
curve will be evaluated at the parameter limits, at the knots
that are within the specified parameter range, and at the number
of positions specified by tolerance between each pair
of knots.

3 WCS_ChordalSize This technique tessellates the curve until the length of each line
segment (chord) in world coordinates is less than the tolerance.

4 NPC_ChordalSize This technique tessellates the curve until the length of each line
segment (chord) in normalized project coordinates is less than
the tolerance.

5 DC_ChordalSize This technique tessellates the curve until the length of each line
segment (chord) in device coordinates is less than the tolerance.

6 WCS_ChordalDev This technique tessellates the curve until the maximum
deviation (in world coordinates) between the line and
the curve is less than the tolerance.

7 NPC_ChordalDev This technique tessellates the curve until the maximum
deviation (in normalized projection coordinates) between
the line and the curve is less than the tolerance.

8 DC_ChordalDev This technique tessellates the curve until the maximum
deviation (in device coordinates) between the line and the
curve is less than the tolerance.

9 WCS_Relative This technique maintains a relative level of quality based on the
tolerance value independent of scaling in world coordinates.

10 NPC_Relative This technique maintains a relative level of quality based on the
tolerance value independent of scaling in normalized projection
coordinates.

11 DC_Relative This technique maintains a relative level of quality based on the
tolerance value independent of scaling in device coordinates.

PEX Version 5.0P, 14-September-1990



-- --

-15-

ReflectionModel
The reflection model specifies the method that is used to perform the light source shading
computation when rendering surface primitives. The input to the light source shading computation is
known as the intrinsic color and the output is known as the shaded color. If a normal exists at the
point at which the reflection model is to be evaluated, it will be used. Otherwise, if a normal exists
for the facet containing the point, it will be used to evaluate the reflection model. If no normal exists,
the reflection model is evaluated, if possible, without a normal. The registered values are:

1 NoShading No light source shading computation is performed. The
surface color is not affected by light source illumination
(effectively, shaded color > intrinsic color).

2 Ambient Only the ambient terms of the lighting equation are used. |
The shaded color will be the intrinsic color as seen under
ambient light.

3 Diffuse Only the ambient and diffuse terms of the lighting equation |
are used. The shaded color will be the intrinsic color as
seen under ambient light, plus a diffuse reflection
component from each light source.

4 Specular The ambient, diffuse, and specular terms of the lighting |
equation are all used during the light source shading
computation. The shaded color will be the same as for
Diffuse, plus a specular reflection component from
each light source.

SurfaceInterpMethod
The surface interpolation method specifies the method that is used to compute color values in surface
interiors when rendering surface primitives. Depth-cueing is applied as a post-process to surface
primitives regardless of the surface interpolation method. The registered values are:

1 None The color resulting from a single light source computation is
used for the entire surface. No interpolation will be
performed across surface interiors or edges.

2 Color The colors are computed at the vertices of the surface according |
to the current reflection_model. These color values
are then linearly interpolated across the interior of the
surface or the edges.

3 DotProduct The lighting equation dot products are computed at the |
vertices. These dot products are linearly interpolated
and the light source shading computation is applied using
these values to compute the color value at each pixel in
the interior of a surface or along a surface edge.

4 Normal An attempt is made to interpolate the normal across the facet |
and perform the light source shading computation as accurately
as possible at each pixel in the interior of a surface or
along a surface edge.

PEX Version 5.0P, 14-September-1990



-- --

-16-

SurfaceApproxMethod
The surface approximation method specifies how to display non-uniform rational B-spline surface
primitives. The registered values are:

1 (imp. dep.) This value for SurfaceApproxMethod is supported on
every implementation, but may differ from one to the next.
It may have the same mnemonic and definition as one of the
other types, or it may be a method that is not in the list
of registered types.

2 ConstantBetweenKnots This technique tessellates the surface with equal parametric
increments between successive pairs of knots. The two tolerance
values control tesselation in each of the two parameter dimensions.
If the tolerance values are not integer values, they are truncated
and only the integer portions of each will be used. If u_tolerance
is less than or equal to zero, the surface will be evaluated only at
the u parameter limits in the u direction, and at the u knots
that are within the specified parameter range. If u_tolerance is
greater than zero, the surface will be evaluated at the u parameter
limits in the u direction, at the u knots that are within
the specified parameter range, and at the number of positions
specified by u_tolerance between each pair of knots. The
value of v_tolerance is used similarly to control the evaluation
in the v direction.

3 WCS_ChordalSize This technique tessellates the surface until the length of each line
segment (chord) in world coordinates in the u parameter
direction is less than the specified u tolerance value,
and the length of every line segment in world coordinates in
the v parameter direction is less than the specified
v tolerance value.

4 NPC_ChordalSize This technique tessellates the surface until the length of each line
segment (chord) in normalized projection coordinates in the
u parameter direction is less than the specified u
tolerance value, and the length of every line segment in
normalized projection coordinates in the v parameter
direction is less than the specified v tolerance value.

5 DC_ChordalSize This technique tessellates the surface until the length of each line
segment (chord) in device coordinates in the u parameter
direction is less than the specified u tolerance value,
and the length of every line segment in device coordinates in
the v parameter direction is less than the specified
v tolerance value.

6 WCS_PlanarDev This technique tessellates the surface into facets. The
technique subdivides the surface until the absolute value of the
maximum deviation, in world coordinates, between any facet and
the surface is less than u_tolerance.

7 NPC_PlanarDev This technique tessellates the surface into facets. The
technique subdivides the surface until the absolute value of the
maximum deviation, in normalized projection coordinates, between

PEX Version 5.0P, 14-September-1990



-- --

-17-

any facet and the surface is less than u_tolerance.

8 DC_PlanarDev This technique tessellates the surface into facets. The
technique subdivides the surface until the absolute value of the
maximum deviation, in device coordinates, between any facet and
the surface is less than u_tolerance.

9 WCS_Relative This technique maintains a relative level of quality based on the
specified u_tolerance value independent of scaling in
world coordinates.

10 NPC_Relative This technique maintains a relative level of quality based on the
specified u_tolerance value independent of scaling in
normalized projection coordinates.

11 DC_Relative This technique maintains a relative level of quality based on the
specified u_tolerance value independent of scaling in
device coordinates.

TrimCurveApproxMethod
The trim curve approximation method specifies the method that is to be used for trim curves when
rendering non-uniform rational B-spline (NURB) surface primitives with trim curves. The registered
values are:

1 (imp. dep.) This value for TrimCurveApproxMethod is supported on
every implementation, but may differ from one to the next.
It may have the same mnemonic and definition as one of the
other types, or it may be a method that is not in the list
of registered types.

2 ConstantBetweenKnots This technique tessellates the trim curve with equal parametric
increments between successive pairs of knots. The tolerance
value controls tesselation of the trim curve. If the tolerance
value is not an integer value, it is truncated and only the
integer portion will be used. If tolerance is less than
or equal to zero, the trim curve will be evaluated only at the
parameter limits, and at the knots that are within the specified
parameter range. If tolerance is greater than zero, the
trim curve will be evaluated at the parameter limits, at the
knots that are within the specified parameter range, and at the
number of positions specified by tolerance between each
pair of knots.

ModelClipOperator
The model clip operator defines the operation that is to be used to combine the specified halfspaces
with the current composite modeling clipping volume. The registered values are:

1 Replace The specified halfspaces are used to create a new composite
modeling clipping volume that replaces the current composite
modeling clipping volume.

2 Intersection The specified halfspaces are intersected with the current
composite modeling clipping volume to compute a new composite

PEX Version 5.0P, 14-September-1990



-- --

-18-

modeling clipping volume.

LightType
The light type defines the characteristics of the light sources that can be used in light source shading
computations. The registered values are:

1 Ambient A light source that affects all surface primitives uniformly.
Ambient light sources have only a color attribute.

2 WCS_Vector A light source that is specified in world coordinates
with a color and a direction vector.

3 WCS_Point A light source that is specified in world coordinates
with a color, a position, and two attenuation coefficients.

4 WCS_Spot A light source that is specified in world coordinates
with a color, a position, a direction vector, a concentration
exponent, two attenuation coefficients and a spread angle.

ColorType
The color type defines the format of color values. The registered values are:

0 Indexed A color that is passed as an unsigned 16-bit integer (i.e.,
it is of type TABLE_INDEX). The integer value is used as an
index into a color lookup table. Dereferencing of an indexed
color value occurs at the time of rendering, at the time when
the actual color value is needed for rendering an output primitive.

1 RGBFloat A color that is passed as three floating point values, |
in the order red [0-1], green [0-1], blue [0-1]. A color in
this format has a type defined by:
COLOR_RGB_FLOAT: [r, g, b : FLOAT]

2 CIEFloat A color that is passed as three floating point values, |
in the order u [0-1], v [0-1] (CIELUV diagram coefficients), and
luminance [0-1]. A color in this format has a type defined by:
COLOR_CIE_FLOAT: [u, v, luminance : FLOAT]

3 HSVFloat A color that is passed as three floating point values, |
in the order hue [0-1] (angle in fractions of a circle, with
red being zero), saturation [0-1], and value [0-1]. A
color in this format has a type defined by:
COLOR_HSV_FLOAT: [hue, saturation, value : FLOAT]

4 HLSFloat A color that is passed as three floating point values, |
in the order hue [0-1] (angle in fractions of a circle, with
red being zero), lightness [0-1], and saturation [0-1].
A color in this format has a type defined by:
COLOR_HLS_FLOAT: [hue, lightness, saturation : FLOAT]

5 RGBInt8 A color that is passed as a unit of four bytes, in the |
order red, green, blue. A color in this format has a type
defined by:
COLOR_RGB_INT8: [r, g, b, pad : CARD8]

PEX Version 5.0P, 14-September-1990



-- --

-19-

6 RGBInt16 A color that is passed as a unit of eight bytes, |
in the order red, green, blue. A color in this format has
a type defined by:
COLOR_RGB_INT16: [r, g, b, pad : CARD16]

FloatFormat
The floating point format defines the format of floating point values. The registered values are:

1 IEEE_754_32 An IEEE 754 standard 32-bit floating point value.
2 DEC_F_Floating A DEC F-floating value.
3 IEEE_754_64 An IEEE 754 standard 64-bit floating point value.
4 DEC_D_Floating A DEC D-floating value.

HLHSRMode
The HLHSR mode defines the method used to do hidden line/hidden surface removal. The registered
values are:

1 Off All output primitives are drawn in the order they are
processed. No attempt will be made to remove hidden surfaces.

2 ZBuffer Visibility is resolved at each pixel using a depth-, |
or z-buffering technique. The z-buffering method and
the number of bits of precision in the z values is
device-dependent. This technique permits visibility
to be computed without an intermediate storage area for
transformed data, can be used to incrementally add primitives
to an image, and is an HLHSR method which is of linear order.

3 Painters Output primitives are buffered as they are processed. |
When an "end rendering" occurs with flush=True, the primitives |
in the buffer are sorted based on the average depth and
rendered back-to-front. This technique is fairly fast
for small numbers of primitives, but requires an intermediate
storage area. This technique does not guarantee totally
correct results, since it fails in cases involving cyclically
overlapping or interpenetrating objects, and in other, even
simpler, cases.

4 Scanline Output primitives are buffered as they are received. |
When an "end rendering" occurs with flush=True, the primitives |
in the buffer are sorted and visibility is computed in scan
line order. This technique can be fairly fast for small
numbers of polygons, but uses an intermediate storage area
to buffer output primitives and must perform a sorting step.

5 HiddenLineOnly Only visible lines will be drawn. Output primitives |
may be buffered as they are received. When an "end rendering"
occurs with flush=True, the primitives in the buffer are |
sorted and a hidden line computation is performed.

PEX Version 5.0P, 14-September-1990



-- --

-20-

PromptEchoType
The prompt echo type defines the method used to do prompting and echoing during picking
operations. The registered values are:

1 EchoPrimitive Use an implementation-dependent technique that at
least highlights the picked primitive for a short period
of time.

2 EchoStructure Echo the contiguous group of primitives with the same |
pick ID as the picked primitive, or all of the primitives
of the structure with the same pick ID as the picked primitive
(the extension is free to implement either semantic for this type).

3 EchoNetwork Echo the entire posted structure network that contains |
the picked primitive.

DisplayUpdateMode
The display update mode defines the manner in which changes will affect the displayed image. The
registered values are:

1 VisualizeEach Visualize each change as it occurs. (PHIGS - ASAP)

2 VisualizeEasy Visualize only the changes that are "easy to do" (PHIGS - |
WAIT/UWOR). Things that are "easy to do" are those that
have a dynamic modification of IMM or can be updated
without a regeneration of the displayed image. The effective |
result of such an action is equivalent to having performed a |
regeneration, but without the expense of a complete retraversal |
and without clearing the display space. |

3 VisualizeNone Visualize none of the changes (PHIGS - WAIT/NIVE). The
changes are applied, but the image is not regenerated until
there is an explicit request to do so.

4 SimulateSome Visualize the easy changes and simulate those changes |
that can be simulated. (PHIGS - WAIT/UQUM)

5 VisualizeWhenever All changes will eventually be visualized. If regenerations |
are necessary, they will be performed at the server’s
convenience. One regeneration may cause a number of changes
to be visualized. The client can issue an update workstation
request to guarantee that all changes have been visualized.
(PHIGS - ASTI/NIVE)

It should be noted that implicit image regenerations may be performed when the display update is
one of VisualizeEach or VisualizeWhenever. If such a regeneration occurs, the display surface will
be cleared and any output that was not generated by traversing the posted structure list (such as
output from core X) will be lost. VisualizeEasy, VisualizeNone, and SimulateSome will not cause
implicit regenerations to occur.

ColorApproxType
The color approximation type describes the way that a renderer will transform rendering pipeline
color values into displayable pixel values. The registered values are:

1 ColorSpace The rendering pipeline color is converted into

PEX Version 5.0P, 14-September-1990



-- --

-21-

a color with three individual color components.

2 ColorRange The rendering pipeline color is converted into |
a single color index.

This enumerated type allows applications to control whether the color value produced through
illumination and depth-cueing computations is transformed into a single value (e.g., for display on an
8-bit pseudo color display) or into three values (e.g., for display on a 24-bit direct color display).

ColorApproxModel
The color approximation model describes the space in which any color filtering or sampling will be
performed during the color approximation phase of rendering. The registered values are:

1 RGB red, green, blue
2 CIE CIELUV diagram u, v coordinates plus luminance
3 HSV hue, saturation, value
4 HLS hue, lightness, saturation
5 YIQ (NTSC) luminance (Y), inphase (wideband orange-cyan), and

quadrature (narrowband magenta-green)

GDP
The GDP type specifies the (2D) Generalized Drawing Primitives (GDPs) that are supported by the |
PEX extension implementation. There are currently no registered GDPs. |

GDP3
The GDP3 type specifies the (3D) Generalized Drawing Primitives (GDP3s) that are supported by |
the PEX extension implementation. There are currently no registered GDP3s. |

GSE
The GSE type specifies the Generalized Structure Elements (GSEs) that are supported by the PEX |
extension implementation. There are currently no registered GSEs. |

RenderingColorModel
The rendering color model defines the color model to be used for color interpolation within the
rendering pipeline. Reflectance equations should have the appearance of being performed in the
color space specified by the rendering color model.

0 (imp. dep.) An implementation-dependent color space
1 RGB red, green, blue color model
2 CIE CIELUV diagram u, v coordinates plus luminance color model
3 HSV hue, saturation, value color model
4 HLS hue, lightness, saturation color model

ParametricSurfaceCharacteristics

1 None No additional surface characteristics beyond the current
surface attributes

2 (imp. dep.) An implementation-dependent method that displays the shape
of the surface. This method does not distinguish between front
and back facing portions of the surface. The appearance of the
representation is controlled by the appropriate set of primitive
attributes for the representation. It is implementation-dependent
how the representation interacts with any interior rendering
indicated by the interior attributes. The data record is
ignored for this type.

PEX Version 5.0P, 14-September-1990



-- --

-22-

3 IsoparametricCurves Isoparametric curves are drawn on the surface. The data
record contains the number of curves to draw in each of the
parameter dimensions and their placement. If the placement
is Uniform, the specified number of curves are evenly
spaced between the parameter limits of the surface; curves
are also drawn at the parameter limits. If the placement
is NonUniform, the specified number of curves are evenly
spaced between each pair of knots; curves are also drawn at
the knots. In both cases only the portions of isoparametric
curves are drawn that are within the interior of the surface
as defined by any trimming curves. This method does not
distinguish between front and back facing portions of the
surface. The tessellation and appearance of the isoparametric
curves are controlled by the surface approximation criteria and
the polyline attributes, respectively. The isoparametric
curves are drawn in addition to any interior rendering
indicated by the interior style or back interior style
attributes. Isoparametric curves have higher visual priority
than the primitive’s filled or hollow interiors, but lower
priority than the primitive’s edges.

4 MC_LevelCurves Level curves are drawn on the surface. The curves correspond
to the intersections of the surface and a finite set of planes
perpendicular to a modelling coordinate direction vector. The
positions of the planes are specified by a sequence of
intersection points along an infinite line defined by a
modelling coordinate origin point, P 0, and a direction
vector, VA.

Pi = P 0 + ti V
A

The ti are a sequence of parameters specifying the
intersection points. They are in the range:

<' < ti < '

The Pi are the intersection points of the perpendicular
planes with the infinite line. P 0 is a specified origin
point in modelling coordinates, and VA is the specified
direction vector in modelling coordinates. The i -th plane
is perpendicular to the direction vector, VA, and inter-
sects the infinite line at point Pi . The data record
consists of the origin point, P 0; the direction vector,
VA; and the list of parameters, ti .

This method does not distinguish between front and back facing
portions of the surface. The tessellation and appearance of the
level curves are controlled by the surface approximation criteria
and the polyline attributes, respectively. The curves are drawn in
addition to any interior rendering indicated by the interior style
or back interior style attributes. Level curves have higher visual
priority than the primitive’s filled or hollow interiors, but lower
priority than the primitive’s edges.

PEX Version 5.0P, 14-September-1990



-- --

-23-

5 WC_LevelCurves Level curves are drawn on the surface. The curves correspond
to the intersections of the surface and a finite set of planes
perpendicular to a modelling coordinate direction vector. The
positions of the planes are specified by a sequence of
intersection points along an infinite line defined by a
modelling coordinate origin point, P 0, and a direction
vector, VA.

Pi = P 0 + ti V
A

The ti are a sequence of parameters specifying the
intersection points. They are in the range:

<' < ti < '

The Pi are the intersection points of the perpendicular
planes with the infinite line. P 0 is a specified origin
point in world coordinates, and VA is the specified
direction vector in world coordinates. The i -th plane
is perpendicular to the direction vector, VA, and inter-
sects the infinite line at point Pi . The data record
consists of the origin point, P 0; the direction vector,
VA; and the list of parameters, ti .

This method does not distinguish between front and back facing
portions of the surface. The tessellation and appearance of the
level curves are controlled by the surface approximation criteria
and the polyline attributes, respectively. The curves are drawn in
addition to any interior rendering indicated by the interior style
or back interior style attributes. Level curves have higher visual
priority than the primitive’s filled or hollow interiors, but lower
priority than the primitive’s edges.

PEX Version 5.0P, 14-September-1990



-- --

-24-

2.7.3. Get Implementation-Dependent Constants

Name:
PEXGetImpDepConstants

Request:
fp_format : FLOAT_FORMAT
drawable_example : DRAWABLE_ID
names : LISTofCONSTANT_NAME

Reply:
constants : LISTofVALUE

Errors:
Value, FloatingPointFormat, Drawable

Description:

This request allows a client to query one or more of the implementation-dependent constants in a PEX
server extension. A single CARD32 or FLOAT is returned for each value requested. These values are
returned in order, with one return value in constants for each requested value in names. Floating-point
values will be returned in the format specified by fp_format. The implementation-dependent constants that
are returned are based on the values that would be used for a drawable with the same root and depth as
drawable_example.

PEX defines a number of standard constant names that all PEX extensions must be able to return. These
standard constant names are 16-bit integers with the high order bit equal to zero. Additional proprietary
implementation-dependent constants can be defined and returned by PEX server extensions using 16-bit
integers with the high order bit equal to one. The standard constant names consist of:

NominalLineWidth CARD32 Width (in pixels) of "standard" line or curve.

NumSupportedLineWidths CARD32 Number of supported line or curve widths (a value of 0
indicates that all line widths, including fractional widths,
between min and max line width are supported).

MinLineWidth CARD32 Width (in pixels) of thinnest line or curve that can be drawn.

MaxLineWidth CARD32 Width (in pixels) of thickest line or curve that can be drawn.

NominalEdgeWidth CARD32 Width (in pixels) of "standard" edge.

NumSupportedEdgeWidths CARD32 Number of supported edge widths (a value of 0 indicates that
all edge widths, including fractional widths, between min and
max edge width are supported).

MinEdgeWidth CARD32 Width (in pixels) of thinnest edge that can be drawn.

MaxEdgeWidth CARD32 Width (in pixels) of thickest edge that can be drawn.

NominalMarkerSize CARD32 Largest dimension (either height or width, in pixels) of
"standard" marker.

NumSupportedMarkerSizes CARD32 Number of supported marker sizes (a value of 0 indicates that
all marker sizes, including fractional values, between min and
max marker size are supported).

PEX Version 5.0P, 14-September-1990



-- --

-25-

MinMarkerSize CARD32 Largest dimension (either height or width, in pixels) of
smallest marker that may be drawn. (This minimum is exclusive |
of the marker type Dot which is always drawn as the smallest |
displayable point).

MaxMarkerSize CARD32 Largest dimension (either height or width, in pixels) of
largest marker that may be drawn. (This maximum is exclusive |
of the marker type Dot which is always drawn as the smallest |
displayable point).

ChromaticityRedU FLOAT Returns the CIELUV u chromaticity coefficient for the red channel
of the (properly adjusted) display device.

ChromaticityRedV FLOAT Returns the CIELUV v chromaticity coefficient for the red channel
of the (properly adjusted) display device.

LuminanceRed FLOAT Returns the CIELUV luminance value for the red channel of the
(properly adjusted) display device.

ChromaticityGreenU FLOAT Returns the CIELUV u chromaticity coefficient for the green channel
of the (properly adjusted) display device.

ChromaticityGreenV FLOAT Returns the CIELUV v chromaticity coefficient for the green channel
of the (properly adjusted) display device.

LuminanceGreen FLOAT Returns the CIELUV luminance value for the green channel of the
(properly adjusted) display device.

ChromaticityBlueU FLOAT Returns the CIELUV u chromaticity coefficient for the blue channel
of the (properly adjusted) display device.

ChromaticityBlueV FLOAT Returns the CIELUV v chromaticity coefficient for the blue channel
of the (properly adjusted) display device.

LuminanceBlue FLOAT Returns the CIELUV luminance value for the blue channel of the
(properly adjusted) display device.

ChromaticityWhiteU FLOAT Returns the CIELUV u chromaticity coefficient for the reference
white of the (properly adjusted) display device.

ChromaticityWhiteV FLOAT Returns the CIELUV v chromaticity coefficient for the reference
white of the (properly adjusted) display device.

LuminanceWhite FLOAT Returns the CIELUV luminance value for the reference white of the
(properly adjusted) display device.

MaxNamesetNames CARD32 Maximum number of names allowed in a name set. |

MaxModelClipPlanes CARD32 Maximum number of modeling clipping planes that may be defined.

TransparencySupported CARD32 Returns True or False, depending on whether the transmission |
coefficient is utilized in the light source shading computations.

PEX Version 5.0P, 14-September-1990



-- --

-26-

DitheringSupported CARD32 Returns True or False, depending on whether the dithering hint |
actually causes dithering to occur.

MaxNonAmbientLights CARD32 Maximum number of non-ambient light sources that may be enabled
at one time.

MaxNURBOrder CARD32 Maximum non-uniform rational B-spline order supported.

MaxTrimCurveOrder CARD32 Maximum order for trim curves.

BestColorApproxValues CARD32 Returns the constant ColorApproxPowersOf2
to indicate whether it is a significant performance win if the
color approximation multiplier values are powers of two so that
pixels can be composed using shifts and adds, or ColorApproxAnyValues
if it makes little or no difference.

DoubleBufferingSupported BOOLEAN Returns True or False depending on
whether or not the server supports double-buffering.

PEX Version 5.0P, 14-September-1990



-- --

-27-

3. Output Commands

This section defines output commands. Output commands are commands that are capable of being processed by a
renderer or stored as structure elements. The format of each of the commands is listed below. Output commands
may be passed to the server to be processed immediately by a renderer with the PEXRenderOutputCommands
request. Output commands may be passed to the server to be stored in a structure with the PEXStoreElements
request. Output commands may be retrieved by a client from a structure resource with the PEXFetchElements
request.

Output commands are always executed in exactly the same fashion, no matter whether they are processed
immediately by a renderer or processed as part of a structure traversal. When sent to the server via a
PEXRenderOutputCommands request, output commands are processed until one is found to be in error, or until
the entire list has been processed. If an output command is discovered to contain an error, it is discarded, as are all
others following it in the list of output commands and an OutputCommand error is returned to the client. Similarly,
if a PEXStoreElements command is used to transmit a list of output commands to the server, the first erroneous
output command and all output commands following it in the list will be discarded, and an OutputCommand error
will be reported to the client. Thus it is not possible for a structure resource to contain any elements with illegal or
inappropriate values. |

OutputCommand errors are only generated by the PEXRenderOutputCommands or PEXStoreElements requests. |
The error checking performed for these two types of requests is identical. When output commands are processed by |
a renderer, attribute specifications that are not supported by the server, out-of-range table indices, or undefined table |
indices are mapped to their default values; no errors will be reported.

3.1. Data Formats

Each of the requests listed above takes a format parameter of type FLOAT_FORMAT. For those requests sending
data from the client to the server, this format word is used to indicate to the server the format of any floating point
values that are contained in the request. For those requests requiring data to be sent back to the client, the format is
used to indicate to the server how it should format the floating point data in the reply sent back to the client.

Color values are typically passed as a color type and a value. The color type specifies whether the color is an index
value or a direct color value of some type. In the case of the "with data" output primitives (which may contain
many color values), the color type is specified just once and all of the color values in the output command must be
of the indicated color type. PEX servers are required to be able to deal with indexed colors and at least one type of
direct color. Indexed colors are specified using an index which is used to obtain the color from a color lookup table.
Direct colors are specified directly as RGB, HSV, HLS, or CIELUV color values of some form. The list of
registered direct color formats can be found in the "Extension Information" section. PEX servers are free to store
direct color values in whatever implementation-dependent format they choose, but they must be capable of
converting those values back into the originally-specified color type when queried by the client.

3.2. Errors |

Errors that can be reported when passing a list of output commands to a PEX server are described in the following |
sections. Specific errors that the PEX server checks for when storing or processing a particular type of output |
command are explained in the "Output Command Descriptions" section. |

3.2.1. FloatingPointFormat Errors |

The floating point format is specified once in each PEXStoreElements or PEXRenderOutputCommands request. |
If the request specifies a floating point format that is not supported by the PEX server, a FloatingPointFormat error |
is reported and none of the output commands are processed, even if they do not contain floating point values. All |

PEX Version 5.0P, 14-September-1990



-- --

-28-

output commands in the list are ignored. |

3.2.2. ColorType Errors |

The color type is generally specified with each color or, in some cases, once per output command. If an output |
command specifies a color type that is not supported by the PEX server, an OutputCommand error is reported. All |
previous output commands in the list are processed, and the output command containing the unsupported color type |
and any subsequent output commands are ignored. |

3.2.3. Length Errors |

If an output command exceeds the length of the output command list, processing of the list stops and an |
OutputCommand error is reported. All previous output commands in the list are processed, and the output |
command that exceeds the request length and any subsequent output commands are ignored. |

3.2.4. OutputCommand Errors |

If an illegal value is specified in an output command, all processing of the list stops and an OutputCommand error is |
reported. All previous output commands in the list are processed, and the output command that contains the illegal |
value and any subsequent output commands are ignored. |

Not all unsupported values are illegal. Some enumerated types allow for implementation dependent values (for |
example, negative line types). In general, output commands that contain these types can have arbitrary values |
specified. When the output command is rendered, values that are not supported by the PEX server are rendered with |
a default value and do not report errors. |

A second category of enumerated types have a fixed set of legal values which are all required to be implemented by |
a conforming PEX server and cannot be inquired (for example, text path). If the PEX server finds a value outside |
the range of legal values, an OutputCommand error is reported, as described above. |

A third category of enumerated types have a fixed set of legal values, but they are not all required to be |
implemented by a PEX server. Values supported by the PEX server can be inquired (for example, interior style). |
When the output command is rendered, values that are not supported by the PEX server are rendered with a default |
value and do not report errors. |

If an output command contains a bitmask value, the PEX server must return an OutputCommand error if any |
undefined bits are set. Usually, these errors are not specifically mentioned in the output command descriptions |
below. |

The client is not required to pass unit length normal vectors to the PEX server in output commands. The effect of |
rendering output primitives with normal vectors that are not unit length is implementation dependent. |

3.3. Output Command Descriptions

The list below describes the format of the output commands that are supported. Each output command is a structure
of type OUTPUT_COMMAND, which contains a 16-bit opcode that uniquely defines the output command (as well
as uniquely identifying the structure element if the command is stored in a structure), a 16-bit size field which
specifies the length of the output command in units of four bytes, and the data needed to specify the output
command. The high-order bit of the opcode field is reserved to indicate whether the output command is one of the
standard PEX output commands (high-order bit equals zero) or a non-standard or proprietary output command
(high-order bit equals one).

PEX Version 5.0P, 14-September-1990



-- --

-29-

Marker type
marker_type : MARKER_TYPE

When processed by a renderer, this command will modify the renderer’s marker_type attribute. If the |
specified marker type is not supported by the PEX server, marker type 3 (MarkerAsterisk) is used. |

Any integer value may be specified as the marker type in this output command.

Marker scale
scale : FLOAT

When processed by a renderer, this command will modify the renderer’s marker_scale attribute. The |
specified scale is multiplied by the nominal marker size (see PEXGetImpDepConstants) and the result is |
mapped to the nearest marker size supported by the server.

Marker color index
color : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s marker_color attribute, setting the
color type to Indexed and the color value to the index specified by color. If the specified color index is not |
defined, color index one is used. If color index one is not defined, the default values listed in Appendix D are |
used.

Marker color
color : COLOR_SPECIFIER

When processed by a renderer, this command will modify the renderer’s marker_color attribute, setting the
color type and value as specified. If the color type is Indexed and the specified color index is not defined, |
color index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Marker bundle index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s marker_bundle_index attribute. If |
an undefined marker bundle index is specified by this output command, then default bundle index one is used. |
If table index one is not defined, the default values listed in Appendix D are used. |

An OutputCommand error is reported if the bundle index in this output command is less than one.

Text font index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s text_font_index attribute. The
text_font_index selects which entry in the text font table (i.e., which font group) will be used to render text
primitives. If an undefined text font index is specified by this output command, the default index one is used. |
If table index one is not defined, the default values listed in Appendix D are used. |

An OutputCommand error is reported if the text font index in this output command is less than one.

Text precision
precision : TEXT_PRECISION

When processed by a renderer, this command will modify the renderer’s text_precision attribute. |

When a text or annotation text output primitive is interpreted, all of the ISTRING fragments in the text string |
are rendered in the same text precision. That is, if the font group selected by the current text font index |
consists of both X and PEX fonts, and if some of the ISTRING fragments in the string are rendered in X |
fonts, the text precision of the entire string must be dropped to at least Char precision. |

If a char_set value is not available in the current font group, then the entire string is rendered using the default |
font group. If a char_set value is not available in the default font group, then that portion of the string is |

PEX Version 5.0P, 14-September-1990



-- --

-30-

rendered in an implemenation dependent manner.

Character expansion
expansion : FLOAT

When processed by a renderer, this command will modify the renderer’s char_expansion attribute. Only the |
magnitude of the specified expansion is considered. The specified expansion is compared to the minimum |
and maximum character expansion factors. These values depend on the font files that are in the font groups in |
the selected font table entry, which in turn depend on which X or PEX font files the client opened. For |
example, if the client opens all PEX font files (that is, all scalable and rotatable stroke fonts), then a |
continuous number of expansions are supported. If the expansion is smaller than the minimum character |
expansion factor, the minimum value is used. If the expansion is larger than the maximum character |
expansion factor, the maximum value is used.

Character spacing
spacing : FLOAT

When processed by a renderer, this command will modify the renderer’s char_spacing attribute. |

No errors or defaults are defined.

Text color index
color : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s text_color attribute, setting the color
type to Indexed and the color value to the index specified by color. If the specified color index is not defined, |
color index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Text color
color : COLOR_SPECIFIER

When processed by a renderer, this command will modify the renderer’s text_color attribute, setting the color
type and value as specified. If the color type is Indexed and the specified color index is not defined, color |
index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Character height
height : FLOAT

When processed by a renderer, this command will modify the renderer’s char_height attribute. If the |
specified height or the computed width is not supported, the height or width is mapped to the nearest character |
height or width supported. These values depend on the font files that are in the font groups in the selected |
font table entry, which in turn depend on which X or PEX font files the client opened. For example, if the |
client opens all PEX font files (that is, all scalable and rotatable stroke fonts), then a continuous number of |
character sizes are supported.

Character up vector
up : VECTOR_2D

When processed by a renderer, this command will modify the renderer’s char_up_vector attribute. If the |
character up vector is degenerate (it has a length of zero), the value <0, 1> is used.

Text path
path : TEXT_PATH

When processed by a renderer, this command will modify the renderer’s text_path attribute. |

An OutputCommand error is reported if the path is not PathRight, PathLeft, PathUp, or PathDown.

Text alignment
alignment : TEXT_ALIGNMENT

PEX Version 5.0P, 14-September-1990



-- --

-31-

When processed by a renderer, this command will modify the renderer’s text_alignment attribute. |

An OutputCommand error is reported if the horizontal alignment is not HalignNormal, HalignLeft, |
HalignCenter, or HalignRight, or if the vertical alignment is not ValignNormal, ValignTop, ValignCap, |
ValignHalf, ValignBase, or ValignBottom.

Annotation text height
height : FLOAT

When processed by a renderer, this command will modify the renderer’s atext_height attribute. If the |
specified height or the computed width is not supported, the height or width is mapped to the nearest |
annotation character height or width supported. These values depend on the font files that are in the font |
groups in the selected font table entry, which in turn depend on which X or PEX font files the client opened. |
For example, if the client opens all PEX font files (that is, all scalable and rotatable stroke fonts), then a |
continuous number of character sizes are supported.

Annotation text up vector
up : VECTOR_2D

When processed by a renderer, this command will modify the renderer’s atext_up_vector attribute. If the |
annotation text up vector is degenerate (it has a length of zero), the value <0, 1> is used.

Annotation text path
path : TEXT_PATH

When processed by a renderer, this command will modify the renderer’s atext_path attribute. |

An OutputCommand error is reported if the path is not PathRight, PathLeft, PathUp, or PathDown.

Annotation text alignment
alignment : TEXT_ALIGNMENT

When processed by a renderer, this command will modify the renderer’s atext_alignment attribute. |

An OutputCommand error is reported if the horizontal alignment is not HalignNormal, HalignLeft, |
HalignCenter, or HalignRight, or if the vertical alignment is not ValignNormal, ValignTop, ValignCap, |
ValignHalf, ValignBase, or ValignBottom.

Annotation text style
index : ATEXT_STYLE

When processed by a renderer, this command will modify the renderer’s atext_style attribute. If the specified |
style is not supported by the PEX server, annotation style 1 (ATextNotConnected) is used. |

Any integer value may be specified as the style in this output command.

Text bundle index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s text_bundle_index attribute. If an |
undefined text bundle index is specified by this output command, then default bundle index one is used. If |
table index one is not defined, the default values listed in Appendix D are used. |

An OutputCommand error is reported if the bundle index in this output command is less than one.

Line type
line_type : LINE_TYPE

When processed by a renderer, this command will modify the renderer’s line_type attribute. If the specified |
line type is not supported by the PEX server, line type 1 (LineTypeSolid) is used. |

PEX Version 5.0P, 14-September-1990



-- --

-32-

Any integer value may be specified as the line type in this output command.

Line width
width : FLOAT

When processed by a renderer, this command will modify the renderer’s line_width attribute. The specified |
line width is multiplied by the nominal line width (see PEXGetImpDepConstants). The result is mapped to |
the nearest line width supported by the server.

Line color index
color : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s line_color attribute, setting the color
type to Indexed and the color value to the index specified by color. If the specified color index is not defined, |
color index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Line color
color : COLOR_SPECIFIER

When processed by a renderer, this command will modify the renderer’s line_color attribute, setting the color
type and value as specified. If the color type is Indexed and the specified color index is not defined, color |
index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Curve approximation
approx : CURVE_APPROX

When processed by a renderer, this command will modify the renderer’s curve_approx attribute. If the |
specified method is not supported by the PEX server, method 1 (implementation dependent) is used. |

Any integer value may be specified as the curve approximation method in this output command.

Polyline interpolation method
polyline_interp : POLYLINE_INTERP

When processed by a renderer, this command will modify the renderer’s polyline_interp attribute. If the |
specified interpolation method is not supported by the PEX server, method 1 (PolylineInterpNone) is used. |

Any integer value may be specified as the interpolation method in this output command.

Line bundle index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s line_bundle_index attribute. If an |
undefined line bundle index is specified by this output command, then default bundle index one is used. If |
table index one is not defined, the default values listed in Appendix D are used. |

An OutputCommand error is reported if the bundle index in this output command is less than one.

Surface interior style
interior_style : INTERIOR_STYLE

When processed by a renderer, this command will modify the renderer’s interior_style attribute. If the |
specified style is not supported, style 1 (InteriorStyleHollow) is used. |

An OutputCommand error is reported if the style is not InteriorStyleHollow, InteriorStyleSolid, |
InteriorStylePattern, InteriorStyleHatch, or InteriorStyleEmpty.

Surface interior style index
index : TYPE_OR_TABLE_INDEX

PEX Version 5.0P, 14-September-1990



-- --

-33-

When processed by a renderer, this command will modify the renderer’s interior_style_index attribute. If the |
current interior_style is InteriorStylePattern or InteriorStyleHatch, the specified index is used to further define |
the rendering style of surface primitives. For InteriorStylePattern, if the specified pattern table index is not |
defined, table index one is used.† For InteriorStyleHatch, the index determines the hatch style and may be |
positive or negative. If the specified hatch style is not supported, style one is used. If hatch style one is not |
supported, the result is implementation dependent.

Surface color index
color : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s surface_color attribute, setting the
color type to Indexed and the color value to the index specified by color. If the specified color index is not |
defined, color index one is used. If color index one is not defined, the default values listed in Appendix D are |
used.

Surface color
color : COLOR_SPECIFIER

When processed by a renderer, this command will modify the renderer’s surface_color attribute, setting the
color type and value as specified. If the color type is Indexed and the specified color index is not defined, |
color index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Surface reflection attributes
attr : REFLECTION_ATTR

When processed by a renderer, this command will modify the renderer’s reflection_attr attribute. |

No errors or defaults are defined.

Surface reflection model
reflection_model : REFLECTION_MODEL

When processed by a renderer, this command will modify the renderer’s reflection_model attribute. If the |
specified reflection model is not supported by the PEX server, method 1 (ReflectionNoShading) is used. |

Any integer value may be specified as the reflection model in this output command.

Surface interpolation method
surface_interp : SURFACE_INTERP

When processed by a renderer, this command will modify the renderer’s surface_interp attribute. If the |
specified interpolation method is not supported by the PEX server, method 1 (SurfaceInterpNone) is used. |

Any integer value may be specified as the interpolation method in this output command. |

Backface surface interior style
interior_style : INTERIOR_STYLE

When processed by a renderer, this command will modify the renderer’s bf_interior_style attribute. If the |
specified style is not supported, style 1 (InteriorStyleHollow) is used. |

An OutputCommand error is reported if the style is not InteriorStyleHollow, InteriorStyleSolid, |
InteriorStylePattern, InteriorStyleHatch, or InteriorStyleEmpty.

Backface surface interior style index
index : TYPE_OR_TABLE_INDEX

† PHIGS requires that the interior style index must be greater than zero for InteriorStylePattern, but this is difficult for PEX
to enforce, so a default action is defined instead.

PEX Version 5.0P, 14-September-1990



-- --

-34-

When processed by a renderer, this command will modify the renderer’s bf_interior_style_index attribute. If |
the current bf_interior_style is InteriorStylePattern or InteriorStyleHatch, the specified index is used to |
further define the rendering style of backfacing surface primitives. For InteriorStylePattern, if the specified |
pattern table index is not defined, table index one is used.‡ For InteriorStyleHatch, the index determines the |
hatch style and may be positive or negative. If the specified hatch style is not supported, style one is used. If |
hatch style one is not supported, the result is implementation dependent.

Backface surface color index
color : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s bf_surface_color attribute, setting
the color type to Indexed and the color value to the index specified by color. If the specified color index is not |
defined, color index one is used. If color index one is not defined, the default values listed in Appendix D are |
used.

Backface surface color
color : COLOR_SPECIFIER

When processed by a renderer, this command will modify the renderer’s bf_surface_color attribute, setting
the color type and value as specified. If the color type is Indexed and the specified color index is not defined, |
color index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Backface surface reflection attributes
attr : REFLECTION_ATTR

When processed by a renderer, this command will modify the renderer’s bf_reflection_attr attribute. |

No errors or default are defined.

Backface surface reflection model
reflection_model : REFLECTION_MODEL

When processed by a renderer, this command will modify the renderer’s bf_reflection_model attribute. If the |
specified reflection model is not supported by the PEX server, method 1 (ReflectionNoShading) is used. |

Any integer value may be specified as the reflection model in this output command.

Backface surface interpolation method
surface_interp : SURFACE_INTERP

When processed by a renderer, this command will modify the renderer’s bf_surface_interp attribute. If the |
specified interpolation method is not supported by the PEX server, method 1 (SurfaceInterpNone) is used. |

Any integer value may be specified as the interpolation method in this output command. |

Surface approximation
approx : SURFACE_APPROX

When processed by a renderer, this command will modify the renderer’s surface_approx attribute. If the |
specified method is not supported by the PEX server, method 1 (implementation dependent) is used. |

Any integer value may be specified as the surface approximation method in this output command. |

Facet culling mode
culling_mode : CULL_MODE

‡ PHIGS requires that the backface interior style index must be greater than zero for InteriorStylePattern, but this is
difficult for PEX to enforce, so a default action is defined instead.

PEX Version 5.0P, 14-September-1990



-- --

-35-

When processed by a renderer, this command will modify the renderer’s culling_mode attribute. |

An OutputCommand error is reported if the mode is not None, BackFaces, or FrontFaces.

Facet distinguish flag
distinguish : BOOLEAN

When processed by a renderer, this command will modify the renderer’s distinguish attribute. |

An OutputCommand error is reported if the mode is not Off or On.

Pattern size |
size : VECTOR_2D |

When processed by a renderer, this command will modify the renderer’s pattern_size attribute. Only the |
magnitudes of the specified pattern size components are considered. If the current interior_style is |
InteriorStylePattern, the specified pattern size components are used. If either component is zero, the output |
command is ignored.

Pattern reference point
point : COORD_2D

When processed by a renderer, this command will modify the renderer’s pattern_ref_pt, pattern_ref_vec1,
and pattern_ref_vec2 attributes. The z coordinate of the reference point will be set to zero, pattern_ref_vec1
will be set to <1,0,0>, and pattern_ref_vec2 will be set to <0,1,0>. |

No errors or defaults are defined.

Pattern reference point and vectors
ref_pt : COORD_3D
vector1 : VECTOR_3D
vector2 : VECTOR_3D

When processed by a renderer, this command will modify the renderer’s pattern_ref_pt, pattern_ref_vec1,
and pattern_ref_vec2 attributes. If the pattern vectors define a degenerate case (that is, if one of the vectors is |
zero length or if the vectors are parallel), the output command is ignored.

Interior bundle index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s interior_bundle_index attribute. If |
an undefined interior bundle index is specified by this output command, then default bundle index one is used. |
If table index one is not defined, the default values listed in Appendix D are used. |

An OutputCommand error is reported if the bundle index in this output command is less than one.

Surface edge flag
onoff : SWITCH

When processed by a renderer, this command will modify the renderer’s surface_edges attribute. |

An OutputCommand error is reported if the flag is not On or Off.

Surface edge type
edge_type : SURFACE_EDGE_TYPE

When processed by a renderer, this command will modify the renderer’s surface_edge_type attribute. If the |
specified edge type is not supported by the PEX server, edge type 1 (SurfaceEdgeSolid) is used. |

Any integer value may be specified as the edge type in this output command.

PEX Version 5.0P, 14-September-1990



-- --

-36-

Surface edge width
width : FLOAT

When processed by a renderer, this command will modify the renderer’s surface_edge_width attribute. The |
specified edge width is multiplied by the nominal edge width (see PEXGetImpDepConstants). The result is |
mapped to the nearest edge width supported by the PEX server.

Surface edge color index
color : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s surface_edge_color attribute, setting
the color type to Indexed and the color value to the index specified by color. If the specified color index is not |
defined, color index one is used. If color index one is not defined, the default values listed in Appendix D are |
used.

Surface edge color
color : COLOR_SPECIFIER

When processed by a renderer, this command will modify the renderer’s surface_edge_color attribute, setting
the color type and value as specified. If the color type is Indexed and the specified color index is not defined, |
color index one is used. If color index one is not defined, the default values listed in Appendix D are used.

Edge bundle index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s edge_bundle_index attribute. If an |
undefined edge bundle index is specified by this output command, then default bundle index one is used. If |
table index one is not defined, the default values listed in Appendix D are used. |

An OutputCommand error is reported if the bundle index in this output command is less than one.

Set individual ASF
attribute : ASF_ATTRIBUTE
source : ASF_VALUE

When processed by a renderer, this command will modify the specified ASF (aspect source flag) attribute in
the renderer. Depending on the value of attribute, one of the following rendering pipeline attributes will be
modified:

marker_type_asf interior_style_asf
marker_scale_asf interior_style_index_asf
marker_color_asf surface_color_asf
text_font_index_asf surface_interp_asf
text_prec_asf reflection_model_asf
char_expansion_asf reflection_attr_asf
char_spacing_asf bf_interior_style_asf
text_color_asf bf_interior_style_index_asf
line_type_asf bf_surface_color_asf
line_width_asf bf_surface_interp_asf
line_color_asf bf_reflection_model_asf
curve_approx_asf bf_reflection_attr_asf
polyline_interp_asf surface_approx_asf

surface_edges_asf
surface_edge_type_asf
surface_edge_width_asf
surface_edge_color_asf

PEX Version 5.0P, 14-September-1990



-- --

-37-

An OutputCommand error is reported if more than one bit in the attribute specifier is set, or if an undefined bit |
position in the attribute specifier is set, or if the attribute specifier is not Bundled or Individual.

Local transform 3D
comp_type : COMPOSITION
matrix : MATRIX

When processed by a renderer, this command will modify the renderer’s local_transform attribute. If
comp_type is PreConcatenate, the specified matrix is pre-concatenated to the local model transformation
matrix. If comp_type is PostConcatentate, the specified matrix is post-concatenated to the local modeling
transform. If comp_type is Replace, the specified matrix replaces the local modeling transform. |

An OuputCommand error is reported if the composition type is not PreConcatenate, PostConcatenate or |
Replace.

Local transform 2D
comp_type : COMPOSITION
matrix : MATRIX_3X3

When processed by a renderer, this command will modify the renderer’s local_transform attribute. This
command is identical to local transform 3D except that the specified matrix is a 3 × 3 matrix instead of a 4 × 4
matrix. Before the concatenation occurs, the 3 × 3 matrix represented by

g

d

a

h

e

b

j

f

c

will be expanded to a 4 × 4 matrix as follows:

g

d

a

h

e

b

j

f

c

A

g

0
d

a

h

0
e

b

0
1
0
0

j

0
f

c

An OutputCommand error is reported if the composition type is not PreConcatenate, PostConcatenate or |
Replace.

Global transform 3D
matrix : MATRIX

When processed by a renderer, this command will replace the renderer’s global_transform attribute. |

No errors or defaults are defined.

Global transform 2D
matrix : MATRIX_3X3

When processed by a renderer, this command will replace the renderer’s global_transform attribute. This
command is identical to "Global transform 3D" except that the specified matrix is a 3 × 3 matrix instead of a 4
× 4 matrix. Before the replacement occurs, the 3 × 3 matrix represented by

g

d

a

h

e

b

j

f

c

PEX Version 5.0P, 14-September-1990



-- --

-38-

will be expanded to a 4 × 4 matrix as follows:

g

d

a

h

e

b

j

f

c

A

g

0
d

a

h

0
e

b

0
1
0
0

j

0
f

c

No errors or defaults are defined. |

Model clip |
clip_switch : CLIP_INDICATOR |

When processed by a renderer, this command will modify the renderer’s model_clip attribute. |

An OutputCommand error is reported if the model clip indicator is not Clip or NoClip.

Set model clip volume 3D
operator : OPERATOR
halfspaces : LISTofHALFSPACE

When processed by a renderer, this command will modify the renderer’s model_clip_volume attribute. The
operator indicated by operator will be used to combine the specified list of halfspaces with the current
modeling clipping volume to form a new modeling clipping volume. Each halfspace is defined by a point and
a normal in modeling coordinates. The vector is considered to be a normal to the plane of the bound of the
halfspace and points in the direction of the halfspace, and the point is considered to be on the plane. If the |
specified operator is not supported by the PEX server or if any halfspace is degenerate, the output command is |
ignored.

Set model clip volume 2D
operator : OPERATOR
halfspaces : LISTofHALFSPACE_2D

When processed by a renderer, this command will modify the renderer’s model_clip_volume attribute. The
operator indicated by operator will be used to combine the specified list of halfspaces with the current
modeling clipping volume to form a new modeling clipping volume. The halfspaces are specified in modeling
coordinates, with the z component of each point and vector assumed to be zero. If the specified operator is |
not supported by the PEX server or if any halfspace is degenerate, the output command is ignored.

Restore model clip volume

When processed by a renderer, this command will modify the renderer’s model_clip_volume attribute. The
modeling clipping volume will be restored to its state as of the last structure invocation, or to the default state
if no structure was invoked. |

No errors or defaults are defined.

View index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s view_index attribute. If the specified |
view index is not defined, index zero is used. If view index zero is not defined, the default values listed in |
Appendix D are used.

Light source state
enable : LISTofCARD16
disable : LISTofCARD16

PEX Version 5.0P, 14-September-1990



-- --

-39-

When processed by a renderer, this command will modify the renderer’s light_state attribute. The current
light_state is modified by activating ("turning on") each light source whose index is specified in the enable
list, and by deactivating ("turning off") each light source whose index is specified in the disable list. If any |
light in the enable or disable list references an undefined Light table entry, the light is ignored. |

An OutputCommand error is reported if a light in either the enable or disable list is less than one, or if the |
same light is specified in both the lists.

Depth cue index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s depth_cue_index attribute. If the |
specified depth cue index is not defined, index zero is used. If depth cue index zero is not defined, the default |
values listed in Appendix D are used.

Pick ID
pickid : CARD32

When processed by a renderer, this command will modify the renderer’s pick_id attribute. |

No errors or defaults are defined.

HLHSR identifier
id : CARD32

When processed by a renderer, this command will modify the renderer’s HLHSR_identifier attribute. This
output command is effectively a no-op when used in conjunction with the currently-registered HLHSR
modes. For non-registered HLHSR modes the effect of this command is implementation-dependent. It is
provided for PHIGS compatibility purposes. If the specified HLHSR identifier is not supported by the PEX |
server, the HLHSR identifier used is implementation dependent.

Color approximation index
index : TABLE_INDEX

When processed by a renderer, this command will modify the renderer’s color_approx_index attribute. If the |
specified color approximation index is not defined, index zero is used. If index zero is not defined, the default |
values listed in Appendix D are used.

Rendering color model
model : COLOR_MODEL

When processed by a renderer, this command will modify the renderer’s rdr_color_model attribute. If the |
specified color model is not supported by the PEX server, model 0 (implementation dependent) is used. |

Any integer value may be specified as the color model in this output command.

Parametric surface characteristics
psc : PSURF_CHAR

When processed by a renderer, this command will modify the renderer’s psurf_char attribute. If the specified |
type is not supported by the PEX server, type 1 (None) is used and the data record contents are |
implementation dependent. |

Any integer value may be specified as the characteristics type in this output command. If an inconsistent |
value is specified in the data record, an OutputCommand error is reported. (For example, if the type is |
IsoparametricCurves and the curve placement is not Uniform or NonUniform, or if the type is |
MC_LevelCurves or WC_LevelCurves and the direction vector has zero length.)

Add names to name set
names : LISTofNAME

PEX Version 5.0P, 14-September-1990



-- --

-40-

When processed by a renderer, this command will add names to the renderer’s name set. If any name in the |
set of normal or inverted name set names is outside the supported range (see PEXGetImpDepConstants), |
that name is ignored.†

Remove names from name set
names : LISTofNAME

When processed by a renderer, this command will remove names from the renderer’s name set. If any name |
in the set of normal or inverted name set names is outside the supported range (see |
PEXGetImpDepConstants), that name is ignored.‡

Execute structure
s_id : STRUCTURE_ID

When processed by a renderer, this output command transfers flow-of-control to the specified structure.
Processing of output commands will then commence with the first structure element in the structure specified
by s_id. When all of the elements in the called structure have been processed, control will be returned. When
this command is executed, all of the rendering pipeline attribute values in the renderer are saved. Then, the
current global modeling transform is set to the current composite modeling transform and the current local
modeling matrix is set to the identity matrix. When control is returned, the saved rendering pipeline attribute
values are restored. |

If s_id references a non-existent structure, an OutputCommand error is reported.* Note that it is not possible |
to have traversal time errors due to non-existent structures, since PEXDestroyStructures removes all |
references to structures it deletes.

Label
label : INT32

When processed by a renderer, this output command is a no-op. Its main usefulness is when used as a
structure element to maintain the specified label as an aid to navigation during structure editing. |

No errors or defaults are defined.

Application data
data : LISTofCARD8

When processed by a renderer, this output command is a no-op. Its main usefulness is when used as a
structure element in order to maintain the specified client application data. |

No errors or defaults are defined. Note that byte-swapping and floating point conversion are not done on this |
type of output command.

GSE
id : INT32
data : LISTofCARD8

When processed by a renderer, the effect of this command is implementation-dependent. Because of floating
point and color format discrepancies across a network interface, it is not anticipated that the GSE will provide
a useful extension mechanism, but it is provided for PHIGS compatibility purposes. If the specified GSE |
identifier is not supported by the PEX server, the output command is ignored. Note that byte-swapping and |
floating point conversions may not be done on this type of output command.

† PHIGS defines no errors for Add Names To Set.
‡ PHIGS defines no errors for Remove Names From Set.
* PHIGS specifies that if the specified structure is non-existent, a new empty structure is created. In PEX, it is the client’s
responsibility to ensure that references to non-existent structure resource identifiers do not occur.

PEX Version 5.0P, 14-September-1990



-- --

-41-

Marker 3D
points : LISTofCOORD_3D

When processed by a renderer, this command will cause marker primitives to be rendered. A marker is a
geometric primitive with only one geometric attribute - its position. The list points contains a list of 3D
coordinates, each of which specifies the position of a marker in modeling coordinates.

During the rendering process, the marker’s position is transformed to a position in device coordinates. A
marker has no geometric size, so geometric transformations will not affect the displayed size of the marker.
The marker’s color is transformed only by the depth-cueing computation (the light-source shading stage of the
rendering pipeline affects only surfaces) and mapped to a device color. The clipping of markers whose
position is inside the clipping volume but whose rendering is outside the clipping volume is implementation-
dependent.

Depending on the setting of the marker attribute ASF values, the marker_color, marker_type, and
marker_scale attributes are either obtained directly from the current marker attribute values or from the
marker_bundle_index’th entry in the renderer’s marker_bundle. |

No errors or defaults are defined.

Marker 2D
points : LISTofCOORD_2D

When processed, this command will cause marker primitives to be drawn. This primitive functions exactly as
the 3D marker primitive except that modeling coordinate positions are specified using only x- and y-
coordinates, and the z-coordinate is always assumed to be zero. |

No errors or defaults are defined.

Text 3D
origin : COORD_3D
vector1 : VECTOR_3D
vector2 : VECTOR_3D
string : ISTRING

When processed by a renderer, this command will cause a text string to be rendered. The parameter string
contains the text string to be rendered. A string is a list of data records, each of which contains char_set,
char_set_width and encoding_state fields, as well as a list of the characters that actually make up that portion
of the string. The char_set field is an index into the current font group. Font groups have individual fonts
numbered starting at one, so a value of three would select the third font in the font group currently being used.
If a char_set value is not available in the current font group, then the entire string will be rendered using the
default font group. If a char_set value is not available in the default font group, then that portion of the string
will be rendered in an implementation-dependent manner. The char_set_width indicates whether characters
in the string are 8-, 16-, or 32-bit values. Characters in the string are byte-swapped by the PEX server, if |
necessary. The encoding_state field is provided for use by clients and is not interpreted by the server.

The text string is located on a plane defined by its position and direction vectors. The origin of the string is a
point in modeling coordinates indicated by origin, and the string’s direction is indicated by the direction
vectors vector1 and vector2. Vector1 defines the positive x-axis of the text local coordinate system. Vector2
defines the positive y-axis of the text local coordinate system. *

Depending on the setting of the text attribute ASF values, the text_color, text_precision, char_expansion,
char_spacing, and text_font_index attributes are either obtained directly from the current text attribute values
or from the text_bundle_index’th entry in the renderer’s text_bundle. The char_height, char_up_vector,
text_path, and text_alignment attributes are also used when drawing the text primitive. An attempt is made to
render the text string as accurately as possible with the font group named by the current text_font_index. The
directions specified by char_up_vector and text_path will be relative to the text local coordinate system.

PEX Version 5.0P, 14-September-1990



-- --

-42-

During the rendering process, a string’s position is transformed to a position in device coordinates. The
string’s color is transformed only by the depth-cueing computation (the light-source shading stage of the
rendering pipeline affects only surfaces) and mapped to a device color. The text string is clipped depending
on the current text precision value. If the text precision is String, clipping is done in an implementation-
dependent fashion. If the text precision is Char, clipping is done on at least a character-by-character basis. If
the text precision is Stroke, clipping is performed at the clipping boundaries for each character. |

If either of the text direction vectors is zero length or if the vectors are parallel, the vectors <1,0,0> and |
<0,1,0> are used.

Text 2D
origin : COORD_2D
string : ISTRING

When processed, this command will cause a text primitive to be drawn. This primitive functions exactly as
the 3D text primitive except that it has no direction vectors, the modeling coordinate position is specified
using only x- and y- coordinates, and the z-coordinate is always assumed to be zero. |

No errors or defaults are defined.

Annotation text 3D
origin : COORD_3D
offset : COORD_3D
string : ISTRING

When processed by a renderer, this command will cause an annotation text string to be rendered. The
parameter string contains the text string to be rendered. A string is a list of data records, each of which
contains char_set, char_set_width and encoding_state fields, as well as a list of the characters that actually
make up that portion of the string. The char_set field is an index into the current font group. Font groups
have individual fonts numbered starting at one, so a value of three would select the third font in the font group
currently being used. If a char_set value is not available in the current font group, then the entire string will
be rendered using the default font group. If a char_set value is not available in the default font group, then
that portion of the string will be rendered in an implementation-dependent manner. The char_set_width
indicates whether characters in the string are 8-, 16-, or 32-bit values. Characters in the string are byte- |
swapped by the PEX server, if necessary. The encoding_state field is provided for use by clients and is not
interpreted by the server.

The origin of the string is a point in modeling coordinates indicated by origin. An offset value in normalized
projection coordinates is specified by offset. The point at which the annotation text string is to be placed is
called the annotation point, and is computed by adding offset to the transformed origin point. The z-
component of the annotation point specifies the the x-y plane in normalized projection coordinate space on
which the annotation text string will be placed.

Depending on the setting of the text attribute ASF values, the text_color, text_precision, char_expansion,
char_spacing, and text_font_index attributes are either obtained directly from the current text attribute values
or from the text_bundle_index’th entry in the renderer’s text_bundle. The atext_height, atext_path,
atext_alignment, atext_up_vector, and atext_style attributes are also used when rendering the text string.

The annotation text string’s color is transformed only by the depth-cueing computation (the light-source
shading stage of the rendering pipeline affects only surfaces) and mapped to a device color. The entire
annotation text primitive is clipped if origin is clipped. If origin is not clipped by modeling, view, or
workstation clipping, the annotation text will be clipped according to text clipping rules and the connection
line, if present, will be clipped according to polyline clipping rules, except that modeling clipping will be
ignored. The current set of polyline attributes will be used to draw the connection line if it is to be drawn. |

No errors or defaults are defined.

PEX Version 5.0P, 14-September-1990



-- --

-43-

Annotation text 2D
origin : COORD_2D
offset : COORD_2D
string : ISTRING

When processed, this command will cause an annotation text primitive to be drawn. This primitive functions
exactly as the 3D annotation text primitive except that origin and offset positions are specified using only x-
and y- coordinates, and the z-coordinate is always assumed to be zero. |

No errors or defaults are defined.

Polyline 3D
vertices : LISTofCOORD_3D

When processed by a renderer, this command will cause a polyline to be rendered. The polyline is defined by
the list of vertices that are specified in vertices, each of which is a coordinate in the modeling coordinate
system. The vertices are joined together by line segments. The first vertex of a polyline is connected to the
second, the second connected to the third, and so on. The last vertex is not connected to the first.

Depending on the setting of the line attribute ASF values, line_color, line_type, and line_width attributes are
either obtained directly from the current line attribute values or from the line_bundle_index’th entry in the
renderer’s line_bundle.

Polylines have no geometric width, only length, so transformations will affect only the displayed length of a
polyline. The polyline colors are transformed only by the depth-cueing computation (the light-source shading
stage of the rendering pipeline affects only surfaces) and mapped to device colors. Polylines are not displayed
if they are outside the currently defined clipping volume. Polylines that cross the clipping volume are clipped,
and only the portion(s) inside the clipping volume is (are) displayed.

At structure creation time, if the polyline has fewer than two vertices, it is stored in the structure, but when |
this output command is interpreted, it has no visual effect. In immediate mode, such a primitive is ignored.

Polyline 2D
vertices : LISTofCOORD_2D

When processed, this command will cause a polyline primitive to be drawn. This primitive functions exactly
as the 3D polyline primitive except that modeling coordinate positions are specified using only x- and y-
coordinates, and the z-coordinate is always assumed to be zero. |

At structure creation time, if the polyline has fewer than two vertices, it is stored in the structure, but when |
this output command is interpreted, it has no visual effect. In immediate mode, such a primitive is ignored.

Polyline set 3D with data
color_type : COLOR_TYPE
vert_attributes : BITMASK
vertices : LISTofLISTofVERTEX

When processed by a renderer, this command will cause a series of polylines to be rendered. The behavior of
this primitive is identical to that of the 3D polyline primitive, except that multiple polylines can be drawn, and
additional information can be specified at each polyline vertex. Color values that are passed will be of the
type specified by color_type. The parameter vert_attributes indicates the attributes which are specified at
each polyline vertex. The components of the vertex attributes bitmask are, in order:

color COLOR

If any of the attribute bits is set, the corresponding attributes must be present for each vertex, and they must
be passed after the coordinate data for each vertex in the order that they appear in the list above.

PEX Version 5.0P, 14-September-1990



-- --

-44-

If color values are passed per vertex, they are considered to be part of the primitive and are used instead of the
line_color attribute. In addition, the use of per-vertex colors is affected by the polyline_interp attribute,
which is obtained directly from the polyline_interp value if the polyline_interp_asf attribute is set to
Individual or from the line_bundle_index’th entry in the renderer’s line_bundle. The polyline_interp attribute
defines how color values between the vertices are to be computed. |

At structure creation time, if any polyline in the set has fewer than two vertices, it is stored in the structure, |
but when this output command is interpreted, the polyline with insufficient data has no visual effect. In |
immediate mode, such a polyline is ignored.

Non-uniform B-spline curve
order : CARD16
type : COORD_TYPE
tmin : FLOAT
tmax : FLOAT
knots : LISTofFLOAT
points : LISTofCOORD

When processed by a renderer, this command will cause a non-uniform B-spline curve to be rendered. The
order is specified as a positive integer. The spline shape is specified using a list of knots in the parametric
coordinate space, plus a list of control points that are specified in modeling coordinates. In general, the
number of control points must be at least as large as the order. The number of control points plus the spline
order must equal the number of knots. The knots sequence must form a non-decreasing sequence of numbers.

The type parameter specifies whether the curve is Rational or NonRational. If the type is Rational, then the
point list must be provided as homogeneous modeling coordinates (COORD_4D), otherwise the the point list
must be provided as non-homogeneous modeling coordinates (COORD_3D).

The parameter range values tmin and tmax specify the range over which the B-spline curve is evaluated.
Tmin must be less than tmax, tmin must be greater than or equal to the order’th knot value, and tmax must be
less than or equal to the (k+1-order)’th knot value, where k is the number of knots.

Depending on the setting of the line attribute ASF values, line_color, line_type, line_width, and curve_approx
attributes are either obtained directly from the current line attribute values or from the line_bundle_index’th
entry in the renderer’s line_bundle. |

When an output command of this type is interpreted, if the curve order is not supported by the PEX server, the |
output command has no visual effect. In immediate mode, such a primitive is ignored. |

Several conditions may cause an OutputCommand error to be reported: type is not Rational or NonRational, |
order is less than one, there are fewer control points than the order, the number of knots and control points is |
not the same, the knots are not non-decreasing, tmin and tmax are inconsistent with the knots, or a Rational |
control point has a w coordinate that is less than or equal to zero.

Fill area 3D
shape : SHAPE
ignore_edges : BOOLEAN
vertices : LISTofCOORD_3D

When processed by a renderer, this command will cause a fill area primitive to be rendered. A fill area is
defined by a list of vertices which are to be joined together to form a planar surface. (Fill areas are not strictly
required to be planar, but strange shading artifacts can occur if a fill area is not planar or nearly so.) The first
vertex of a fill area is connected to the second, the second connected to the third, and so on. The last vertex is
implicitly connected to the first.

During the rendering process, the fill area vertices are transformed to positions in device coordinates. The
surface colors are transformed by the light source shading computation (which utilizes the interior style and
the reflection model) and are further modified by the depth-cueing computation and mapped to device colors.

PEX Version 5.0P, 14-September-1990



-- --

-45-

Fill areas are not displayed if they are outside the currently-defined clipping volume. Fill areas that cross the
clipping volume are clipped, and only the portion(s) inside the clipping volume is (are) displayed.

A fill area can cross over itself to create a complex shape. The odd-even rule is used for determining the |
points that lie in the interior of a fill area. The shape parameter is passed as a hint as to the type of fill area
that is defined by the vertices. A shape hint of Unknown means that nothing is known about the shape of the
fill area. A shape of Complex means that the fill area edges may self-intersect. A shape of Nonconvex means
that the edges do not self-intersect, but the fill area is not wholly convex. Convex means that all of the interior
angles of the fill area are convex. Fill areas that are of a higher complexity than indicated by their shape hint
are drawn in an implementation-dependent manner. PEX server extensions may ignore the shape hint and
treat all fill area primitives as shape Unknown. The ignore_edges parameter specifies whether or not surface
edge attributes are to be applied to the fill area primitives. If it is True, no surface edges will ever be drawn
for the fill area. If False, surface edges will be drawn using the current surface edge attributes if the surface
edge flag is On. Depending on the setting of the surface edge attribute ASF values, the surface_edges,
surface_edge_color, surface_edge_type, and surface_edge_width attributes are either obtained directly from
the current surface edge attribute values or from the edge_bundle_index’th entry in the renderer’s
edge_bundle.

Depending on the setting of the surface attribute ASF values, the surface_color, interior_style,
interior_style_index, surface_interp, and reflection_model attributes are either obtained directly from the
current surface attribute values or from the interior_bundle_index’th entry in the renderer’s interior_bundle.
If, when rendered, the fill area is determined to be front-facing with respect to the point of view, the
surface_color (obtained as previously described) and reflection_attr attributes are used to compute the
color(s) of the fill area. If the fill area is determined to be back-facing with respect to the point of view, the
bf_surface_color and bf_reflection_attr attributes are used instead. Regardless of the orientation of the fill
area, if the interior_style is Pattern, the pattern_size, pattern_ref_pt, pattern_ref_vec1, and pattern_ref_vec2
attributes may be used to pattern the fill area. |

At structure creation time, if the fill area has fewer than three vertices, it is stored in the structure, but when |
this output command is interpreted, it has no visual effect. In immediate mode, such a primitive is ignored. |

An OutputCommand error is reported if the shape or ignore_edges parameter is invalid.

Fill area 2D
shape : SHAPE
ignore_edges : BOOLEAN
vertices : LISTofCOORD_2D

When processed, this command will cause a fill area primitive to be drawn. This primitive functions exactly
as the 3D fill area primitive except that modeling coordinate positions are specified using only x- and y-
coordinates, and the z-coordinate is always assumed to be zero. |

At structure creation time, if the fill area has fewer than three vertices, it is stored in the structure, but when |
this output command is interpreted, it has no visual effect. In immediate mode, such a primitive is ignored. |

An OutputCommand error is reported if the shape or ignore_edges parameter is invalid.

Fill area 3D with data
shape : SHAPE
ignore_edges : BOOLEAN
color_type : COLOR_TYPE
facet_attributes : BITMASK
vert_attributes : BITMASK
facet : FACET

When processed by a renderer, this command will cause a fill area to be rendered. The behavior of this
primitive is identical to that of the 3D fill area primitive, except that additional information can be specified

PEX Version 5.0P, 14-September-1990



-- --

-46-

for the fill area itself and for each vertex. Color values that are passed will be of the type specified by
color_type.

The parameter facet_attributes indicates the attributes which are specified for the fill area. The components of
the facet attributes bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attribute must be present in the data that defines the fill
area facet and they must be passed in the order that they appear in the list above. If a color value is passed per
facet, it is taken to be the intrinsic color of the front face of the facet. If a normal is passed per facet, it is
taken to be the normal to the facet. (Normals are assumed to be unit vectors.)

The parameter vert_attributes specifies the attributes which are specified at each fill area vertex. The
components of the vertex attributes bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attributes must be present for each vertex, and they must
be passed after the coordinate data for each vertex in the order that they appear in the list above.

If color values are passed per vertex, they are considered to be part of the primitive and are used instead of the
surface_color attribute. Vertex colors will be utilized rather than facet colors if both are provided. If normals
are passed per vertex, they are taken to be the normals at the vertices of the fill area. In addition, the use of
per-vertex colors is affected by the surface_interp attribute, which is obtained directly from the surface_interp
value if the surface_interp_asf attribute is set to Individual or from the interior_bundle_index’th entry in the
renderer’s interior_bundle. The surface_interp attribute defines how color values between the vertices are to
be computed.

The shape parameter is passed as a hint as to the type of fill area that is defined by the vertices. A shape hint
of Unknown means that nothing is known about the shape of the fill area. A shape of Complex means that the
fill area edges may self-intersect. A shape of Nonconvex means that the edges do not self-intersect, but the fill
area is not wholly convex. Convex means that all of the interior angles of the fill area are convex. Fill areas
that are of a higher complexity than indicated by their shape hint are drawn in an implementation-dependent
manner. PEX server extensions may ignore the shape hint and treat all fill area primitives as shape Unknown.
The ignore_edges parameter specifies whether or not surface edge attributes are to be applied to the fill area
primitives. If it is True, no surface edges will ever be drawn for the fill area. If False, surface edges will be
drawn using the current surface edge attributes if the surface edge flag is On. |

At structure creation time, if the fill area has fewer than three vertices, it is stored in the structure, but when |
this output command is interpreted, it has no visual effect. In immediate mode, such a primitive is ignored. |

An OutputCommand error is reported if the shape or ignore_edges parameter is invalid.

Fill area set 3D
shape : SHAPE
ignore_edges : BOOLEAN
contour_hint : CONTOUR
vertices : LISTofLISTofCOORD_3D

When processed by a renderer, this command will cause a fill area set primitive to be drawn. This type of
primitive is essentially a set of fill area primitives. Together, this set of fill areas defines a polygon with
islands or holes. The ignore_edges parameter will be applied to all of the fill areas in the fill area set.

The shape parameter is passed as a hint as to the type of contours that comprise the fill area set. A shape hint
of Unknown means that nothing is known about the shape of the constituent contours. A shape of Complex

PEX Version 5.0P, 14-September-1990



-- --

-47-

means that some contours of the fill area set may have edges that self-intersect. A shape of Nonconvex means
that none of the contours of the fill area set have edges that self-intersect, but some may not be wholly
convex. Convex means that all of the interior angles of all of the contours are convex. Contours that are of a *
higher complexity than indicated by their shape hint are drawn in an implementation-dependent manner. PEX
server extensions may ignore the shape hint and treat all constituent contours as shape Unknown.

The contour_hint parameter provides further information as to the relationships between contours in the fill
area set. If contour_hint is Disjoint, all contours will be spatially disjoint. No overlapping or intersection
occurs between any contours in the fill area set. If contour_hint is Nested, contours will either be disjoint or
wholly contained within another contour. No contour will have edges that intersect or are coincident with
edges of any other contour. If contour_hint is Intersecting, separate contours may have edges that are
coincident or overlap. If contour_hint is Unknown, nothing is known about the interrelationships between
contours. Fill area sets with contours that have higher complexity interrelationships than that indicated by
their contour hint are drawn in an implementation-dependent manner. PEX server extensions may ignore the
contour hint and treat all fill area sets as Unknown. |

At structure creation time, if any of the contours of the fill area set has fewer than three vertices, or if there are |
no contours defined, the output command is stored in the structure, but when this output command is |
interpreted, it has no visual effect. In immediate mode, such a primitive is ignored. |

An OutputCommand error is reported if the shape or ignore_edges parameter is invalid.

Fill area set 2D
shape : SHAPE
ignore_edges : BOOLEAN
contour_hint : CONTOUR
vertices : LISTofLISTofCOORD_2D

When processed, this command will cause a fill area set primitive to be drawn. This primitive functions
exactly as the 3D fill area set primitive except that modeling coordinate positions are specified using only x-
and y- coordinates, and the z-coordinate is always assumed to be zero. |

At structure creation time, if any of the contours of the fill area set has fewer than three vertices, or if there are |
no contours defined, the output command is stored in the structure, but when this output command is |
interpreted, it has no visual effect. In immediate mode, such a primitive is ignored. |

An OutputCommand error is reported if the shape or ignore_edges parameter is invalid.

Fill area set 3D with data
shape : SHAPE
ignore_edges : BOOLEAN
contour_hint : CONTOUR
color_type : COLOR_TYPE
facet_attributes : BITMASK
vert_attributes : BITMASK
facet_data : OPT_DATA
vertices : LISTofLISTofVERTEX

When processed by a renderer, this command will cause a fill area set to be rendered. The behavior of this
primitive is identical to that of the 3D fill area set primitive, except that additional information can be
specified for of the fill area set, for each edge, and for each vertex. Color values that are passed will be of the
type specified by color_type.

The parameter facet_attributes indicates the attributes which are specified in the facet_data parameter. The
components of the facet attributes bitmask are, in order:

PEX Version 5.0P, 14-September-1990



-- --

-48-

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attributes must be present in the facet_data parameter and
must be passed in the order that they appear in the list above. If a color value is passed as part of facet_data,
it is taken to be the intrinsic color of the front face of the fill area set.

The parameter vert_attributes specifies the attributes which are specified at each fill area set vertex. The
components of the vertex attributes bitmask are, in order:

color COLOR
normal VECTOR_3D
edges SWITCH

If any of the attribute bits is set, the corresponding attributes must be present for each vertex, and they must
be passed after the coordinate data for each vertex in the order that they appear in the list above.

If color values are passed as part of facet_data or as part of the vertices list, they are considered to be part of
the primitive and are used instead of the surface_color attribute. Vertex colors will be utilized rather than
facet colors if both are provided. If normals are passed per vertex, they are taken to be the normals at the
vertices of the fill area. If surface edge flags are specified per vertex, each flag specifies whether to draw the
edge from the vertex with which the flag is specified to the next vertex. (E.g., for a facet with four vertices,
the edge flag associated with vertex #1 indicates whether to draw edge #1-#2, edge flag #2 specifies edge #2-
#3, edge flag #3 specifies edge #3-#4, and edge flag #4 specifies edge #4-#1.) Surface edges are always
drawn with the surface edge color, never with per facet or per vertex colors.

In addition, the use of per-vertex colors is affected by the surface_interp attribute, which is obtained directly
from the surface_interp value if the surface_interp_asf attribute is set to Individual or from the
interior_bundle_index’th entry in the renderer’s interior_bundle. The surface_interp attribute defines how
color values between the vertices are to be computed. |

At structure creation time, if any of the contours of the fill area set has fewer than three vertices, or if there are |
no contours defined, the output command is stored in the structure, but when this output command is |
interpreted, it has no visual effect. In immediate mode, such a primitive is ignored. |

An OutputCommand error is reported if the shape ignore_edges, or contour_hint parameter is invalid.

Triangle strip
color_type : COLOR_TYPE
facet_attributes : BITMASK
vert_attributes : BITMASK
facet_data : LISTofOPT_DATA
vertices : LISTofVERTEX

When processed by a renderer, this command will cause a triangle strip primitive to be drawn. Color values
that are passed will be of the type specified by color_type. The parameter facet_attributes indicates the
attributes which are specified for each facet of the triangle strip. The components of the facet attributes
bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attribute must be present in facet_data, which is the data
that defines each triangular facet. The attributes that are passed in this way must be passed in the order that
they appear in the list above. If a color value is passed per facet, it is taken to be the intrinsic color of the
front face of the facet. If a normal is passed per facet, it is taken to be the normal to the facet. (Normals are
assumed to be unit vectors.) There will be n-2 entries in the facet_data list, where n is the number of entries in
the vertices list.

PEX Version 5.0P, 14-September-1990



-- --

-49-

The parameter vert_attributes specifies the attributes which are specified at each triangle strip vertex. The
components of the vertex attributes bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attribute must be present for each vertex, and it must be
passed after the coordinate data for each vertex. The attributes that are passed in this way must be passed in
the order that they appear in the list above.

If color values are passed per vertex, they are considered to be part of the primitive and are used instead of the
surface_color attribute. Vertex colors will be utilized rather than facet colors if both are provided. If normals
are passed per vertex, they are taken to be the normals at the vertices of the facet.

The triangle strip is created from the vertex array. The strip is composed of n-2 triangles, where n is the
number of vertices. The first triangle is formed from the first three vertices in the list, the second triangle is
formed by the second through the fourth vertices in the list, etc., up to the last triangle, which is formed by the
last three vertices in the list. |

All attributes that affect the representation of fill area sets also affect the representation of the triangle strip
primitive. |

At structure creation time, if the triangle strip has fewer than three vertices, the output command is stored in |
the structure, but when this output command is interpreted, it has no visual effect. In immediate mode, such a |
primitive is ignored.

Quadrilateral mesh
shape : SHAPE
color_type : COLOR_TYPE
m_pts : CARD16
n_pts : CARD16
facet_attributes : BITMASK
vert_attributes : BITMASK
facet_data : LISTofOPT_DATA
vertices : LISTofVERTEX

When processed by a renderer, this command will cause a quadrilateral mesh primitive to be rendered. The
shape parameter is passed as a hint as to the type of quadrilaterals that comprise the primitive. A shape hint
of Unknown means that nothing is known about the shape of the constituent quadrilaterals. A shape of
Complex means that the some quadrilaterals may have edges that self-intersect. A shape of Nonconvex means
that none of the quadrilaterals have edges that self-intersect, but some may not be wholly convex. Convex
means that all of the interior angles of all of the quadrilaterals are convex. Quadrilaterals that are of a higher
complexity than indicated by their shape hint are drawn in an implementation-dependent manner. Color
values that are passed will be of the type specified by color_type.

The parameter facet_attributes indicates the attributes which are specified for each facet of the quadrilateral
mesh. The components of the facet attributes bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attribute must be present in facet_data, which is the data
that defines each quadrilateral facet. The attributes that are passed in this way must be passed in the order that
they appear in the list above. If a color value is passed per facet, it is taken to be the intrinsic color of the
front face of the facet. If a normal is passed per facet, it is taken to be the normal to the facet. (Normals are
assumed to be unit vectors.)

PEX Version 5.0P, 14-September-1990



-- --

-50-

The parameter vert_attributes specifies the attributes which are specified at each quadrilateral mesh vertex.
The components of the vertex attributes bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attribute must be present for each vertex, and it must be
passed after the coordinate data for each vertex. The attributes that are passed in this way must be passed in
the order that they appear in the list above.

If color values are passed per vertex, they are considered to be part of the primitive and are used instead of the
surface_color attribute. Vertex colors will be utilized rather than facet colors if both are provided. If normals
are passed per vertex, they are taken to be the normals at the vertices of the facet.

The surface will be created from a vertex array that is stored in row major order (i.e., the column number
varies fastest as vertices are stored in the array). The (ith,jth), (i+1th,jth), (i+1th,j+1th) and (ith,j+1th) vertices
are connected to create a single facet. Adjacent vertices are interconnected until the entire facet network is
processed. There are m_pts × n_pts entries in the vertices array, and there are (m_pts-1) × (n_pts-1) entries in
the facet_data array if any per-facet attributes are passed. It is allowable for the boundary of a single facet to
not reside in a single plane. The treatment of the vertex attributes in this case is implementation-dependent. *

All attributes that affect the representation of fill area sets also affect the representation the quadrilateral mesh
primitive. |

At structure creation time, if either m_pts or n_pts is less than two, the output command is stored in the |
structure, but when this output command is interpreted, it has no visual effect. In immediate mode, such a |
primitive is ignored. |

An OutputCommand error is reported if the shape parameter is invalid.

Set of fill area sets
shape : SHAPE
color_type : COLOR_TYPE
fas_attributes : BITMASK
vert_attributes : BITMASK
edge_attributes : BITMASK |
contour_hint : CONTOUR
contours_all_1 : BOOLEAN
num_fas : CARD16
num_verts : CARD16
num_edges : CARD16
num_contours : CARD16
per_fas_data : LISTofOPT_DATA
per_vert_data : LISTofVERTEX
per_edge_data : LISTofSWITCH
contours : LISTofLISTofLISTofCARD16

When processed by a renderer, this command will draw a set of fill area sets that may be connected (i.e.,
individual fill area sets may share geometry and attribute information at vertices). Shading calculations and
transformations need only be performed once per shared vertex instead of once for every fill area set that
shares the vertex. Similarly, data can be transmitted across the network once per unique vertex instead of
once for every fill area set sharing the vertex.

The shape parameter is passed as a hint as to the type of contours that comprise each of the fill area sets. A
shape hint of Unknown means that nothing is known about the shape of the constituent contours. A shape of
Complex means that some contours of the fill area sets may have edges that self-intersect. A shape of
Nonconvex means that none of the contours of the fill area sets have edges that self-intersect, but some may
not be wholly convex. Convex means that all of the interior angles of all of the contours are convex. (Note

PEX Version 5.0P, 14-September-1990



-- --

-51-

that a fill area set with more than one contour is always allowed to have contours that intersect. It is quite
possible that the only times that the fastest rendering code path can be taken are if the number of contours in a
fill area set is equal to one or if contours_all_1 is True, and the shape flag for the set of fill area sets primitive
is Convex.) Contours that are of a higher complexity than indicated by their shape hint are drawn in an
implementation-dependent manner. PEX server extensions may ignore the shape hint and treat all constituent
contours as shape Unknown.

The contour_hint parameter provides further information as to the relationships between contours in each of
the fill area sets. If contour_hint is Disjoint, all contours will be spatially disjoint. No overlapping or
intersection occurs between any contours in any of the fill area sets. If contour_hint is Nested, contours will
either be disjoint or wholly contained within another contour. No contour will have edges that intersect or are
coincident with edges of any other contour. If contour_hint is Intersecting, separate contours may have edges
that are coincident or overlap. If contour_hint is Unknown, nothing is known about the interrelationships
between contours. Fill area sets with contours that have higher complexity interrelationships than that
indicated by their contour hint are drawn in an implementation-dependent manner. PEX server extensions
may ignore the contour hint and treat all fill area sets as Unknown.

Color values that are passed will be of the type specified by color_type.

The parameter fas_attributes indicates the attributes that are specified for each fill area set. The components
of the fas_ attributes bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attribute must be present in per_fas_data, which contains
one data record for each fill area set. The attributes that are passed in this way must be passed in the order
that they appear in the list above. If a color value is passed, it is taken to be the intrinsic color of the front
face of the fill area set. If a normal is passed, it is taken to be the normal to the fill area set. (Normals are
assumed to be unit vectors.) If fas_attributes is null, the per_fas_data list will be null as well. Otherwise,
there will be num_fas entries in per_facet_data.

The parameter vert_attributes indicates the attributes that are provided at each vertex in the list of unique
vertices specified by per_vert_data. The components of the vertex attributes bitmask are, in order:

color COLOR
normal VECTOR_3D

If any of the attribute bits is set, the corresponding attribute must be present for each vertex in the
per_vert_data list, and it must be passed after the coordinate data for each vertex. The attributes that are
passed in this way must be passed in the order that they appear in the list above. If color values are passed per
vertex, they are considered to be part of the primitive and are used instead of the surface_color attribute. If
normals are passed per vertex, they are taken to be the normal at the indicated vertex, and will be used by all
contours that share the vertex. There will always be num_verts entries in the per_vert_data list.

The parameter edge_attributes specifies the attributes that are specified at each edge. The components of the
edge attributes bitmask are, in order:

edges SWITCH

If any of the attribute bits is set, the corresponding attribute must be present for each edge in the list
per_edge_data. If none of the attribute bits are set, the list per_edge_data will be an empty list. Otherwise, it
will contain num_edges entries, each of which contains a switch indicating whether or not the corresponding
edge should be drawn. This list is a flattened list without counts, so if it is nonempty, it is up to the PEX
server extension to maintain a pointer to the proper position in this list while processing the data in contours.
If edge switches are supplied, each flag specifies whether to draw the edge from the vertex with which the flag
is specified to the next vertex. (E.g., for a contour with four vertices, the edge flag associated with vertex #1
indicates whether to draw edge #1-#2, edge flag #2 specifies edge #2-#3, edge flag #3 specifies edge #3-#4,

PEX Version 5.0P, 14-September-1990



-- --

-52-

and edge flag #4 specifies edge #4-#1.) Surface edges are always drawn with the surface edge color, never
with per-fill-area-set or per-vertex colors.

The connectivity of the primitive is defined by the contours array. The number of contours in the first fill area
set is contained as the first entry in the contours array. The number of contours is followed by a list of data
records, one for each of the contours in the fill area set. If this number is n, then the next n data records in the
contours array are used to define the first fill area set. The value following the contour count contains the
number of vertices in the first contour of the first fill area set. If this number is m, then the next m values in
the array comprise the data record for the first contour. This data record contains the indices for the vertices
of the first contour. Depending on n, the next value in the list is either the number of vertices in the second
contour for the first fill area set, or it is the number of contours in the second fill area set. As a special case, if
contours_all_1 is True, then the contour count field in each fill area set is guaranteed to be one.

Vertices are numbered with indices starting from zero (i.e., the first vertex is referenced as vertex 0). |

All attributes that affect the representation of fill area sets also affect the representation of the set of fill area
sets primitive. |

An OutputCommand error is reported if any of the edge flags in the per_edge_data array is not On or Off, or |
if any of the shape, contour_hint, or contours_all_1 parameters is invalid, or if any of the vertex indices in the |
contours array is out of range, or if there are not as many edge flags as there are vertex indices in the lists in |
the contours array.

Non-uniform B-spline surface
type : COORD_TYPE
u_order : CARD16
v_order : CARD16
u_knots : LISTofFLOAT
v_knots : LISTofFLOAT
mpts : CARD16
npts : CARD16
points : LISTofCOORD
trim_curves : LISTofLISTofTRIM_CURVE

When processed by a renderer, this command will draw a non-uniform B-spline surface. It generates the
spline surface as a function of the parametric variables u and v. U_order and v_order indicate the order of the
parametric variables and are specified as positive integers. The spline shape is specified using two lists of
knots in the parametric coordinate space, plus an array of control points that are specified in modeling
coordinates. The u_knots sequence and the v_knots sequence must each form a non-decreasing sequence of
numbers. Mpts indicates the number of points in the u direction and npts indicates the number of points in the
v direction. Vertices are stored in the vertex array in row major order (i.e., the column number varies fastest
as vertices are stored in the array).

The minimum and maximum knot values in u_knots define the range over which the B-spline surface is
evaluated in the u parametric direction, and the minimum and maximum knot values in v_knots define the
range over which the B-spline surface is evaluated in the v parametric direction.

The type parameter specifies whether the surface is Rational or NonRational. If the surface_type is Rational,
then the point list must be provided as homogeneous modeling coordinates (COORD_4D), otherwise the point
list must be provided as non-homogeneous modeling coordinates (COORD_3D).

In addition to the parametric bounds, a list of trimming loops may be specified. Trimming loops serve to
further restrict the region in parametric coordinate space over which the B-spline surface is to be evaluated.
Each trimming loop is defined as a list of one or more B-spline trimming curve segments that are connected
head-to-tail. Each trim curve can be Rational or NonRational, have a different order, etc. The list must be
explicitly closed, so that the tail of the last B-spline curve segment joins the head of the first B-spline curve
segment in each trimming loop. Each trimming curve is parameterized independently. If there is a floating

PEX Version 5.0P, 14-September-1990



-- --

-53-

point inaccuracy in closure or in head-to-tail connectivity between B-spline curve segments, closure or
connectivity will be assumed. B-spline curve segments for trimming loops are defined in the parameter space
of the surface and may not go outside the parameter space of the surface. When no trimming loops are
specified, the rectangular parameter limits of the surface are rendered as the edges of the surface based on the
edge flag attribute.

Trimming loops define the region of the surface that is to be rendered based on the following two rules: (1) a
point is in the portion of the surface to be rendered if any ray projected from it to infinity has an odd number
of intersections with trimming loops, and (2) traveling in the direction of a trimming loop, the portion of the
surface to be trimmed away should be on the right and the portion to be retained should be on the left. In
other words, a loop defined in counterclockwise order will cause the interior of the loop to be retained and the
exterior to be clipped away. A clockwise loop will cause the exterior of the loop to be retained and the
interior to be trimmed away. If loops are nested, they must alternate in direction. In all cases, the outermost
loop must be counterclockwise. Each separate B-spline curve segment must not intersect itself. The B-spline
curve segments in a trimming loop, as a collection, also must not intersect themselves, except for the joining
at the endpoints. Trimming loops that do not obey these rules will result in an implementation-dependent
rendering.

Each B-spline curve segment has a visibility flag that controls its visibility for the purposes of surface edge
display. Depending on the settings of a renderer’s surface edge attributes and the visibility flags associated |
with trim curves, the B-spline curve segments in trimming loops may be drawn as surface edges.

All attributes that affect the representation of fill area sets also affect the representation of the non-uniform
B-spline surface primitive. In addition, the surface_approx attribute is used to determine how to approximate
the B-spline surface and the psurf_char attribute is used to specify the appearance of the B-spline surface. |

If either of the surface orders or any of the trim curve orders is not supported by the PEX server, the output |
command has no visual effect. In immediate mode, such a primitive is ignored. |

Several conditions may cause an OutputCommand error to be reported: type is not Rational or NonRational, |
order is less than one, there are fewer control points in either the u or v direction than the order, the order is |
inconsistent with the number of knots and control points, the knots are not non-decreasing, a Rational control |
point has a w coordinate that is less than or equal to zero, a trim curve order is less than 2, a trim curve does |
not have enough control points for its order, a trim curve’s order is inconsistent with its number of knots and |
control points, a trim curve’s knot sequence is not non-decreasing, or a trim curve’s parameter range is |
inconsistent with its knots.

Cell array 3D
point1 : COORD_3D
point2 : COORD_3D
point3 : COORD_3D
dx : CARD32
dy : CARD32
colors : LISTofTABLE_INDEX

When processed by a renderer, this command will cause a cell array primitive to be rendered. Color values
that are passed will be of type Indexed. A cell array is a parallelogram of equal-sized cells, each of which is a
parallelogram and has a single color. Each cell has a width defined by:

width =
dx

3(point 1.x < point 2.x )2 + (point 1.y < point 2.y )2 + (point 1.z < point 2.z )2

and a height defined by:

PEX Version 5.0P, 14-September-1990



-- --

-54-

height =
dy

3(point 1.x < point 3.x )2 + (point 1.y < point 3.y )2 + (point 1.z < point 3.z )2

The colors are specified in a one-dimensional array of size dx × dy. The color of each cell is specified by the
index of the corresponding element in the colors array. Colors are stored in this array by rows, that is, the
column number varies fastest as colors are stored into the array. The first color in the array is the color at the
cell at the corner of point1, and subsequent colors represent the colors of cells proceeding to to point2. |

If any color index is not defined, color index one is used. If color index one is not defined, the default values |
in Appendix D are used. |

An OutputCommand error is reported if dx or dy is zero.

Cell array 2D
point1 : COORD_2D
point2 : COORD_2D
dx : CARD32
dy : CARD32
colors : LISTofTABLE_INDEX

When processed, this command will cause a cell array primitive to be drawn. This primitive functions exactly
as the 3D cell array primitive except that modeling coordinate positions are specified using only x- and y-
coordinates, and the z-coordinate is always assumed to be zero. In addition, the cell array is defined by two
points which define a rectangle that is taken to be aligned with the modeling coordinate axes. |

If any color index is not defined, color index one is used. If color index one is not defined, the default values |
in Appendix D are used. |

An OutputCommand error is reported if dx or dy is zero.

Extended cell array 3D
color_type : COLOR_TYPE
point1 : COORD_3D
point2 : COORD_3D
point3 : COORD_3D
dx : CARD32
dy : CARD32
colors : LISTofCOLOR

When processed by a renderer, this command has the same effect as the "cell array 3D" primitive, except that
the colors may be passed as indexed or direct color values, depending on the setting of color_type. |

If any color index is not defined, color index one is used. If color index one is not defined, the default values |
in Appendix D are used. |

An OutputCommand error is reported if dx or dy is zero.

GDP 3D
gdp_id : INT32
points : LISTofCOORD_3D
data : LISTofCARD8

When processed by a renderer, the effect of this command is implementation-dependent. Because of floating
point and color format discrepancies across a network interface, it is not anticipated that the GDP 3D will
provide a useful extension mechanism, but it is provided for PHIGS compatibility purposes. |

PEX Version 5.0P, 14-September-1990



-- --

-55-

If the specified GDP identifier is not supported, the output command is ignored. Note that byte-swapping and |
floating point conversion may not be done on this type of output command.

GDP 2D
gdp_id : INT32
points : LISTofCOORD_2D
data : LISTofCARD8

When processed by a renderer, the effect of this command is implementation-dependent. Because of floating
point and color format discrepancies across a network interface, it is not anticipated that the GDP 2D will
provide a useful extension mechanism, but it is provided for PHIGS compatibility purposes. |

If the specified GDP identifier is not supported, the output command is ignored. Note that byte-swapping and |
floating point conversion may not be done on this type of output command.

PEX Version 5.0P, 14-September-1990



-- --

-56-

4. Lookup Tables

A lookup table is a PEX resource that allows clients to create tables of values for various purposes. Lookup tables
are used to support a level of indirection for some output primitive attributes as well as for storing view
information, light source descriptions, depth-cue information, etc.

Tables may be sparse, therefore tables consist of index/entry pairs. The index is the number that will be used to
reference that entry. Since indices are 16-bit values, index values are allowed to be any value in the range
[0..65535], with the possible exceptions of 0 (some tables allow an index of zero, others do not) and 65535 (tables
can have at most 216 < 1 definable entries, so if a table begins at zero, the maximum index value is 65534). An entry
is the collection of information (or the data record) that is defined for each type of table. The table descriptions in
this section include the definition of an entry for each type of table. A table index refers to an undefined entry if no
table entry has ever been associated with that index, or if the associated table entry has been deleted. A table entry
may contain one or more data items, depending on the table type. For instance, in the MarkerBundle table type,
each entry in the table consists of a marker type value, a marker scale value, and a marker color value.

A lookup table may have predefined entries. These are table entries for certain table index values that are filled in
automatically by the server when the table is created. Predefined table entries may be deleted or overwritten. Each
type of table has a specific index value that indicates the default table entry. If a table index references an undefined
table entry, the contents of the default table entry will be used. If the default table entry is undefined, then the
default attribute values (as listed in Appendix D) will be used as the default entry. The default entry for all tables is
one, except for the view, depth cue, and color approximation tables whose default entry is zero.

PEX lookup tables are designed to support PHIGS set/realized semantics. A lookup table entry may be set to a
value that is impossible to represent exactly or is not supported on the drawable type for which the table was
created. Such a value will be silently mapped to a reasonable default when rendering to the drawable. When
retrieving entry values from a lookup table, clients may request the value as originally specified by the client
(value_type = Set), or the value that is actually used when rendering, whether it be the value actually specified or a
default value (value_type = Realized). Since all predefined entries are by definition realizable, predefined lookup
table entries will return the same value regardless of whether the Set or the Realized value is requested.

The allowable table types, the range of allowable index values, the default entry, and the format of a table entry for
each table type are as follows:

LineBundle (1..65535, default entry = 1)
This type of lookup table is used to maintain attributes for drawing polyline and curve primitives. Depending
on the setting of the aspect source flag attributes, polyline and curve attributes may be obtained from a line
bundle table. Each entry in this type of table consists of the following:

line_type LINE_TYPE
polyline_interp POLYLINE_INTERP
curve_approx CURVE_APPROX
line_width FLOAT
line_color COLOR_SPECIFIER

The attributes stored in a line bundle table are defined and used in the same fashion as the pipeline context
attributes of the same name.

MarkerBundle (1..65535, default entry = 1)
This type of lookup table is used to maintain attributes for drawing marker primitives. Depending on the
setting of the aspect source flag attributes, marker attributes may be obtained from a marker bundle table.
Each entry in this type of table consists of the following:

PEX Version 5.0P, 14-September-1990



-- --

-57-

marker_type MARKER_TYPE
marker_scale FLOAT
marker_color COLOR_SPECIFIER

The attributes stored in a marker bundle table are defined and used in the same fashion as the pipeline context
attributes of the same name.

TextBundle (1..65535, default entry = 1)
This type of lookup table is used to maintain attributes for drawing text and annotation text primitives.
Depending on the setting of the aspect source flag attributes, text and annotation text attributes may be
obtained from a text bundle table. Each entry in this type of table consists of the following:

text_font_index TABLE_INDEX
text_precision TEXT_PRECISION
char_expansion FLOAT
char_spacing FLOAT
text_color COLOR_SPECIFIER

The attributes stored in a text bundle table are defined and used in the same fashion as the pipeline context
attributes of the same name.

InteriorBundle (1..65535, default entry = 1)
This type of lookup table is used to maintain attributes for drawing surface primitives. Depending on the
setting of the aspect source flag attributes, surface attributes may be obtained from an interior bundle table.
Each entry in this type of table consists of the following:

interior_style INTERIOR_STYLE
interior_style_index TYPE_OR_TABLE_INDEX
surface_color COLOR_SPECIFIER
reflection_attr REFLECTION_ATTR
reflection_model REFLECTION_MODEL
surface_interp SURFACE_INTERP
bf_interior_style INTERIOR_STYLE
bf_interior_style_index TYPE_OR_TABLE_INDEX
bf_surface_color COLOR_SPECIFIER
bf_reflection_attr REFLECTION_ATTR
bf_reflection_model REFLECTION_MODEL
bf_surface_interp SURFACE_INTERP
surface_approx SURFACE_APPROX

The attributes stored in an interior bundle table are defined and used in the same fashion as the pipeline
context attributes of the same name.

EdgeBundle (1..65535, default entry = 1)
This type of lookup table is used to maintain attributes for drawing edges of surface primitives. Depending on
the setting of the aspect source flag attributes, surface edge attributes may be obtained from an edge bundle
table. Each entry in this type of table consists of the following:

surface_edges SWITCH
surface_edge_type SURFACE_EDGE_TYPE
surface_edge_width FLOAT
surface_edge_color COLOR_SPECIFIER

The attributes stored in an edge bundle table are defined and used in the same fashion as the pipeline context
attributes of the same name.

PEX Version 5.0P, 14-September-1990



-- --

-58-

Pattern (1..65535, default entry = 1)
This type of lookup table can be used to maintain patterns for use when interior_style is set to Pattern.

color_type COLOR_TYPE
numx CARD16
numy CARD16
colors LISTofCOLOR

A pattern rectangle is comprised of numx × numy cells. Color_type indicates whether the color values are |
stored as indexed or direct color values. The colors are stored in the array row-by-row. The upper left hand
cell in the pattern rectangle is the first one in the list of colors, followed by the remaining cells in the first row.
The color values for cells in the second row follow, and so on.

Color (0..65534, default entry = 1)
This type of lookup table can be used to resolve indirect color references. Consequently, all color values in
this type of table must be specified as direct colors.

color_type COLOR_TYPE
color DIRECT_COLOR

A ColorType error is generated if an attempt is made to set an entry with a color_type of Indexed. |

TextFont (1..65535, default entry = 1)
This type of lookup table is used to maintain a list of font groups. Each font group is a list of resource IDs for
either PEX fonts or X11 fonts. Resource IDs for fonts can appear multiple times in a font table, or even
within a single table entry. Only PEX fonts are guaranteed to fully realize all of the PEX text attributes.
Specifically, scaling and rotation operations on text strings are not guaranteed to affect text primitives if an
X11 font is used, but they are guaranteed to work if a PEX font is used. Font values are specified as indices
when using output commands. A font index can be used with a table of this type in order to obtain the actual
font group to be used. Switching between fonts in the font group is accomplished by means of a switching
mechanism embedded within strings that are to be rendered. It is up to the client to ensure that all of the
character sets that are available in a table of this type are available in the default table entry as well.

font LISTofFONT_ID

If a font is opened, bound to a font table, and then closed, the contents of the font will remain, since the
contents are still being referenced by a font table. However, when the font table is queried, the value
AlreadyFreed will be returned for such a font, since it no longer has a valid resource ID by which it can be
referenced.

View (0..65534, default entry = 0)
This type of lookup table is used to maintain viewing information. "Views" are then specified as indices,
which are used to look up the appropriate information in a view lookup table. See the PEX Introduction and
Overview document for a description of how the viewing parameters are utilized in the rendering
computations.

clip_flags BITMASK
clip_limits NPC_SUBVOLUME
orientation MATRIX
mapping MATRIX

Orientation is a matrix which maps geometry in world coordinates to view reference (a.k.a., eye or viewing)
coordinates. Mapping is a matrix which maps geometry in view reference coordinates to normalized
projection coordinates. The clip_limits specify the minimum and maximum of a rectangular volume in
normalized projection coordinates. Clip_flags contains three bits that indicate whether or not clipping should
be performed against the sides, back, and front planes of the volume specified by clip_limits. The NPC

PEX Version 5.0P, 14-September-1990



-- --

-59-

subvolume, along with the clip indicators and clip limits, determines the actual clipping volume for each view.

Light (1..65535, default entry = 1)
This type of lookup table is used to maintain light source definitions for use in light source shading
computations. See the PEX Introduction and Overview document for a description of how the light
parameters are utilized in the rendering computations.

light_type LIGHT_TYPE
direction VECTOR_3D
point COORD_3D
concentration FLOAT
spread_angle FLOAT
attenuation [factor1, factor2 : FLOAT]
color COLOR_SPECIFIER

Depending on the type of light, some of the values in a table entry may be ignored.

DepthCue (0..65534, default entry = 0)
This type of lookup table is used to maintain depth-cueing information. See the PEX Introduction and
Overview document for a description of how the depth-cue parameters are utilized in the rendering
computations.

mode SWITCH
front_plane FLOAT
back_plane FLOAT
front_scaling FLOAT
back_scaling FLOAT
color COLOR_SPECIFIER

ColorApprox (0..65534, default entry = 0)
This type of lookup table is used to define the way that a renderer will transform rendering pipeline color
values into displayable pixel values. Each entry in this type of table contains the following data:

type COLOR_APPROX_TYPE
color_model COLOR_APPROX_MODEL
max1 CARD16
max2 CARD16
max3 CARD16
mult1 CARD32
mult2 CARD32
mult3 CARD32
weight1 FLOAT
weight2 FLOAT
weight3 FLOAT
base_pixel CARD32
dither SWITCH

After a renderer has performed illumination, depth-cueing, and clipping operations, it is left with a rendering
pipeline color that must be converted to a displayable pixel value. The renderer’s current color_approx_index
is used to determine which entry in a table of this type is to be used to perform the conversion to a displayable
pixel value. As the color value emerges from the rendering pipeline, it is first converted to a color in the color
space specified by color_model. (In the case where the rendering pipeline colors are already in the specified
color space, this is a null mapping.)

PEX Version 5.0P, 14-September-1990



-- --

-60-

If the type is ColorSpace, each component of the converted color (c1, c2, c3) is scaled by the corresponding
maximum value (max1, max2, max3). These can be used by the client to indicate the number of entries in the
colormap for each color axis, minus 1. (For example, to compute a pixel value for a 3-3-2 RGB colormap
allocation, the max values would be 7, 7, and 3). If necessary, these fixed point vertex color values are then
interpolated across the primitive with sampling and interpolation being performed in the specified
color_model. At each pixel written, the three values are packed into a single integer by multiplying the first
component by mult1, the second by mult2, the third by mult3, and then adding those three values together with
the base_pixel to arrive at the pixel value to be written. (If the entry that is used has a type of ColorSpace, the
weight1, weight2, and weight3 values are not used.)

For a more concrete example, assume that an implementation supports interpolation in only the RGB color
model, so color_model must be set to RGB. During the color approximation stage, as each color value
emerges from the rendering pipeline it must first be converted to an RGB triple. If the rendering pipeline has
been implemented to perform color computations in RGB space, this conversion is a no-op. Each of the three
components is then mapped to an integer value as follows:

red = red intensity component mapped into the range [0, max1]
green = green intensity component mapped into the range [0, max2]
blue = blue intensity component mapped into the range [0, max3]

and a single pixel value is formed by computing:

pixel = mult1 × red + mult2 × green + mult3 × blue + base_pixel

If color_type is ColorRange, the values are combined in a different fashion during the color approximation
stage. Once again, the rendering pipeline color is first converted into a color in the color space specified by
color_model. First, the weight values are normalized and the color components (c1, c2, c3) that emerge from
the rendering pipeline are multiplied by their corresponding normalized weight values (weight1, weight2,
weight3) and the terms are added together to form a single value. The weight values can be adjusted to allow
equal weighting of the components (weights are all equal) or to minimize or eliminate one or more of the
components (one or more weights equal to 0). For instance, the weight values of 0.30, 0.59, 0.11 can be used
to convert an RGB value to a single-valued intensity after the fashion of the NTSC color standard.

Next, the computed value is multiplied by max1 (max2 and max3 are not used) which should be set by the
client to represent the number of color map entries in the range, minus 1. For instance, if a client desires to
display its computed image on a pseudo-color display using gray scale, it could allocate 100 contiguous color
cells in the color map, and set max1 to the value of 99, so that intensity values would be mapped into the
range [0,99]. This value is interpolated across a primitive, if necessary, by some incremental method. The
value is then replicated for each of the three color components, which are then multiplied by mult1, mult2, and
mult3 respectively. The values are then added together with base_pixel to form the pixel value that is to be
written. It is up to the client to provide reasonable multipliers for drawables that are not three-channel in |
nature. For instance, multipliers of (1.0, 0.0, 0.0) could be used if the target drawable was known to be a
window of visual type PseudoColor. PEX implementations are free to optimize the case where one or more
of the multipliers is zero.

The use of addition rather than logical OR for composing pixel values permits allocations where the primary
components are not allocated into distinct bitplanes. Since some hardware allows a performance
improvement if the multiplication values (mult1, mult2, mult3) are powers of two, the
PEXGetImpDepConstants request can be used to obtain the constant BestColorApproxValues in order to get
an indication as to whether powers of two are preferred.

Dither is treated as a hint to the renderer as to whether or not some attempt at dithering should be performed.
Whether or not dithering is supported and the dithering algorithm that is used are implementation-dependent
(see PEXGetImpDepConstants).

PEX Version 5.0P, 14-September-1990



-- --

-61-

4.1. Lookup Table Resource Management

The lookup table is an X11 resource and carries all of the responsibilities and access rights of X11 resources. These
requests manage the creation, freeing, and copying of lookup table resources.

4.1.1. Create Lookup Table

Name:
PEXCreateLookupTable

Request:
drawable_example : DRAWABLE_ID
lut_id : LOOKUP_TABLE_ID
table_type : TABLE_TYPE

Errors:
IDChoice, Drawable, Value, Alloc, LookupTable

Description:

This request creates a lookup table resource for the specified lut_id, for use with drawables with the same
root window and depth as the example drawable specified by drawable_example. The table_type parameter
indicates the type of lookup table that is to be created. Some entries of a lookup table may be defined at the
time the resource is created. The number of predefined entries and their contents are dependent on the type
of table and are implementation-dependent.

4.1.2. Copy Lookup Table

Name:
PEXCopyLookupTable

Request:
src_lut_id : LOOKUP_TABLE_ID
dest_lut_id : LOOKUP_TABLE_ID

Errors:
LookupTable, Match

Description:

This request copies the source lookup table src_lut_id to a destination lookup table dest_lut_id, after first
deleting all the entries in the destination lookup table. The dest_lut_id must already exist as a valid
resource and it must be of the same type as src_lut_id.

PEX Version 5.0P, 14-September-1990



-- --

-62-

4.1.3. Free Lookup Table

Name:
PEXFreeLookupTable

Request:
lut_id : LOOKUP_TABLE_ID

Errors:
LookupTable

Description:

This request deletes the association between the resource ID and the lookup table. The lookup table
storage will be freed when no other resource references it.

PEX Version 5.0P, 14-September-1990



-- --

-63-

4.2. Lookup Table Inquiry

These requests inquire lookup table attributes.

4.2.1. Get Table Info

Name:
PEXGetTableInfo

Request:
drawable_example : DRAWABLE_ID
table_type : TABLE_TYPE

Reply:
definable_entries : CARD16
num_predefined : CARD16
predefined_min : TABLE_INDEX
predefined_max : TABLE_INDEX

Errors:
Drawable, Value

Description:

This request will return information about lookup tables of the specified table_type if they were to be used
with drawables of the same root and depth as drawable_example. Definable_entries is the maximum
number of entries that can be defined in this type of table, and includes the number of predefined entries.
Predefined entries can be redefined by the client. All the entries between predefined_min and
predefined_max are guaranteed to be defined initially (i.e., predefined entries must have contiguous
indices). If num_predefined is zero, then the values for predefined_min and predefined_max are
meaningless.

PEX Version 5.0P, 14-September-1990



-- --

-64-

4.2.2. Get Predefined Entries

Name:
PEXGetPredefinedEntries

Request:
fp_format : FLOAT_FORMAT
drawable_example : DRAWABLE_ID
table_type : TABLE_TYPE
start : TABLE_INDEX
count : CARD16

Reply:
entries : LISTofTABLE_ENTRY

Errors:
Drawable, Value, FloatingPointFormat, LookupTable

Description:

This request will return the values for predefined table entries of the specified table_type if they were to be
used with drawables of the same root and depth as drawable_example. The default entry will be returned
for each entry in the range that is not predefined. Count table entries will be returned in entries, starting
with the table entry specified by start. The values in entries will be in the format defined for table_type.
Floating point values in entries will be returned in the floating point format specified in fp_format.

4.2.3. Get Defined Indices

Name:
PEXGetDefinedIndices

Request:
lut_id : LOOKUP_TABLE_ID

Reply:
defined_indices : LISTofTABLE_INDEX

Errors:
LookupTable

Description:

This request will return in defined_indices a list of all the indices that are currently defined in the lookup
table resource specified by lut_id. The entries returned include those predefined by the server and those
that have been defined by clients.

PEX Version 5.0P, 14-September-1990



-- --

-65-

4.2.4. Get Table Entry

Name:
PEXGetTableEntry

Request:
fp_format : FLOAT_FORMAT
lut_id : LOOKUP_TABLE_ID
index : TABLE_INDEX
value_type : {Set, Realized}

Reply:
status : {Defined, Default}
table_type : TABLE_TYPE
entry : TABLE_ENTRY

Errors:
LookupTable, FloatingPointFormat, Value

Description:

This request will return the type of lookup table and the lookup table entry specified by index. The entry
will be obtained from the lookup table specified by lut_id and will be of the format indicated by lut_id’s
table type. If the specified entry in the lookup table is not defined, the values for the default entry for that
table type will be returned in entry and status will be set to Default. If the specified entry is defined, its
contents will be returned in entry and status will be set to Defined. If value_type is Set, the values returned
will be those originally specified by the client. If value_type is Realized, the values returned will be the
values that are actually used during rendering (i.e., the default values, which are used if the specified value
is not supported on the drawable). Floating point values in entry will be returned in the floating point
format specified in fp_format.

4.2.5. Get Table Entries

Name:
PEXGetTableEntries

Request:
fp_format : FLOAT_FORMAT
lut_id : LOOKUP_TABLE_ID
start : TABLE_INDEX
count : CARD16
value_type : {Set, Realized}

Reply:
table_type : TABLE_TYPE
entries : LISTofTABLE_ENTRY

Errors:
LookupTable, Value, FloatingPointFormat

Description:

This request will return the type of table and count table entries from the lookup table specified by lut_id,
starting at the entry specified by start. The default entry will be returned for any entry in the requested

PEX Version 5.0P, 14-September-1990



-- --

-66-

range that is not defined. If value_type is Set, the values returned will be those originally specified by the
client. If value_type is Realized, the values returned will be the values that are actually used during
rendering (i.e., the default values, which are used if the specified value is not supported on the drawable).
Floating point values in entries will be returned in the floating point format specified in fp_format.

PEX Version 5.0P, 14-September-1990



-- --

-67-

4.3. Lookup Table Modification

This section contains requests that modify lookup table resources.

4.3.1. Set Table Entries

Name:
PEXSetTableEntries

Request:
fp_format : FLOAT_FORMAT
lut_id : LOOKUP_TABLE_ID
start : TABLE_INDEX
count : CARD16
entries : LISTofTABLE_ENTRY

Errors:
LookupTable, Value, FloatingPointFormat, ColorType, Alloc

Description:

This request will set count lookup table entries in the lookup table resource specified by lut_id, starting at
the entry indicated by start. The values to use when setting the entries in the lookup table are provided in
entries, and are in the format specified for a lookup table of lut_id’s type. Floating point values in entries
will be in the floating point format specified in fp_format.

4.3.2. Delete Table Entries

Name:
PEXDeleteTableEntries

Request:
lut_id : LOOKUP_TABLE_ID
start : TABLE_INDEX
count : CARD16

Errors:
LookupTable, Value

Description:

This request will delete the defined table entries in the lookup table resource specified by lut_id, between |
and including the entry specified by start and the entry specified by start+count-1.

PEX Version 5.0P, 14-September-1990



-- --

-68-

5. Pipeline Contexts

A pipeline context is a PEX resource that contains an instance of the attributes that describe a rendering pipeline.
The attributes in a pipeline context are copied to a renderer resource whenever a PEXBeginRendering request is
executed. This section describes pipeline context attributes and the operations that can be performed on pipeline
context resources.

Some of the requests in this section affect attributes of a pipeline context. The item_mask and item_list parameters
specify which components are to be affected. Each bit in the item_mask indicates whether or not the corresponding
attribute is affected. In the cases where pipeline context attributes are being set or queried, there is a corresponding
entry in the item_list for each set bit in item_mask. It is therefore possible to affect one or many pipeline context
attributes with a single request.

A name set resource ID is one of the attributes of a pipeline context. If a name set is created, bound to a pipeline
context, and then freed, the contents of the name set will remain, since the contents are still being referenced by the
pipeline context. However, when a pipeline context’s attributes are queried, the value AlreadyFreed will be
returned for the name set ID, since it no longer has a valid resource ID by which it can be referenced.

The pipeline context components, in order, are listed in the following table.

Attribute Name Data Type Default Value
Marker attributes

marker_type MARKER_TYPE MarkerAsterisk
marker_scale FLOAT 1.0
marker_color COLOR_SPECIFIER {Indexed, 1}
marker_bundle_index TABLE_INDEX 1

Text attributes
text_font_index TABLE_INDEX 1
text_precision TEXT_PRECISION String
char_expansion FLOAT 1.0
char_spacing FLOAT 0.0
text_color COLOR_SPECIFIER {Indexed, 1}
char_height FLOAT 0.01
char_up_vector VECTOR_2D <0.0, 1.0>
text_path TEXT_PATH PathRight
text_alignment TEXT_ALIGNMENT {HalignNormal, ValignNormal}
atext_height FLOAT 0.01
atext_up_vector VECTOR_2D <0.0, 1.0>
atext_path TEXT_PATH PathRight
atext_alignment TEXT_ALIGNMENT {HalignNormal, ValignNormal}
atext_style ATEXT_STYLE ATextNotConnected
text_bundle_index TABLE_INDEX 1

Line and curve attributes
line_type LINE_TYPE LineTypeSolid
line_width FLOAT 1.0
line_color COLOR_SPECIFIER {Indexed, 1}
curve_approx CURVE_APPROX {1, 1.0}
polyline_interp POLYLINE_INTERP PolylineInterpNone
line_bundle_index TABLE_INDEX 1

Surface attributes
interior_style INTERIOR_STYLE InteriorStyleHollow
interior_style_index TYPE_OR_TABLE_INDEX 1

PEX Version 5.0P, 14-September-1990



-- --

-69-

surface_color COLOR_SPECIFIER {Indexed, 1}
reflection_attr REFLECTION_ATTR {1.0, 1.0, 1.0, 0.0, 0.0, {Indexed, 1}}
reflection_model REFLECTION_MODEL ReflectionNoShading
surface_interp SURFACE_INTERP SurfaceInterpNone
bf_interior_style INTERIOR_STYLE InteriorStyleHollow
bf_interior_style_index TYPE_OR_TABLE_INDEX 1
bf_surface_color COLOR_SPECIFIER {Indexed, 1}
bf_reflection_attr REFLECTION_ATTR {1.0, 1.0, 1.0, 0.0, 0.0, {Indexed, 1}}
bf_reflection_model REFLECTION_MODEL ReflectionNoShading
bf_surface_interp SURFACE_INTERP SurfaceInterpNone
surface_approx SURFACE_APPROX {1, 1.0, 1.0}
culling_mode CULL_MODE None |
distinguish BOOLEAN False
pattern_size VECTOR_2D {1.0, 1.0} |
pattern_ref_pt COORD_3D {0.0, 0.0, 0.0}
pattern_ref_vec1 VECTOR_3D <1.0, 0.0, 0.0>
pattern_ref_vec2 VECTOR_3D <0.0, 1.0, 0.0>
interior_bundle_index TABLE_INDEX 1

Surface edge attributes
surface_edges SWITCH Off
surface_edge_type SURFACE_EDGE_TYPE SurfaceEdgeSolid
surface_edge_width FLOAT 1.0
surface_edge_color COLOR_SPECIFIER {Indexed, 1}
edge_bundle_index TABLE_INDEX 1

Geometry transformation attributes
local_transform MATRIX identity
global_transform MATRIX identity
model_clip CLIP_INDICATOR NoClip |
model_clip_volume LISTofHALF_SPACE Null
view_index TABLE_INDEX 0

Color transformation attributes
light_state LISTofTABLE_INDEX Null
depth_cue_index TABLE_INDEX 0
color_approx_index TABLE_INDEX 0
rdr_color_model COLOR_MODEL 0
psurf_char PSURF_CHAR {1, NULL}

ASF attributes
asfs ASF_SPECIFIER {0, all Individual}

Miscellaneous attributes
pick_id CARD32 0
HLHSR_identifier CARD32 0
name_set † NAME_SET_ID None

The bits in the asfs field of an ASF_SPECIFIER are defined as:

marker_type_asf ASF_VALUE Individual
marker_scale_asf ASF_VALUE Individual
marker_color_asf ASF_VALUE Individual
text_font_index_asf ASF_VALUE Individual
text_precision_asf ASF_VALUE Individual

† When pipeline context attributes are copied to a renderer (e.g., whenever a PEXBeginRendering request occurs), the ac-
tual contents of the name set resource is copied, and not the resource ID of the name set.

PEX Version 5.0P, 14-September-1990



-- --

-70-

char_expansion_asf ASF_VALUE Individual
char_spacing_asf ASF_VALUE Individual
text_color_asf ASF_VALUE Individual
line_type_asf ASF_VALUE Individual
line_width_asf ASF_VALUE Individual
line_color_asf ASF_VALUE Individual
curve_approx_asf ASF_VALUE Individual
polyline_interp_asf ASF_VALUE Individual
interior_style_asf ASF_VALUE Individual
interior_style_index_asf ASF_VALUE Individual
surface_color_asf ASF_VALUE Individual
reflection_model_asf ASF_VALUE Individual
surface_interp_asf ASF_VALUE Individual
reflection_attr_asf ASF_VALUE Individual
bf_interior_style_asf ASF_VALUE Individual
bf_interior_style_index_asf ASF_VALUE Individual
bf_surface_color_asf ASF_VALUE Individual
bf_reflection_model_asf ASF_VALUE Individual
bf_surface_interp_asf ASF_VALUE Individual
bf_reflection_attr_asf ASF_VALUE Individual
surface_approx_asf ASF_VALUE Individual
surface_edges_asf ASF_VALUE Individual
surface_edge_type_asf ASF_VALUE Individual
surface_edge_width_asf ASF_VALUE Individual
surface_edge_color_asf ASF_VALUE Individual

The attributes of the pipeline context resource are defined as follows:

marker_type
This attribute contains the marker type to use when drawing marker primitives. See the "Extension
Information" section for descriptions of the registered marker types.

marker_scale
This attribute contains the marker scale factor to use when drawing marker primitives.

marker_color
This attribute contains the color value to use when drawing marker primitives.

marker_bundle_index
This attribute contains the lookup table index to be used to obtain bundled marker attributes from the marker
bundle table.

text_font_index
This attribute contains the lookup table index to be used to obtain the font ID for drawing text and annotation
text primitives.

text_precision
This attribute contains the text precision to use when drawing text and annotation text primitives.

char_expansion
This attribute contains the character expansion to use when drawing text primitives. The character expansion
factor is the deviation of the width to height ratio of the characters from the ratio indicated by the font
designer.

PEX Version 5.0P, 14-September-1990



-- --

-71-

char_spacing
This attribute contains the character spacing to use when drawing text primitives. Character spacing specifies
how much additional space is to be inserted between two adjacent character bodies and is specified as a
fraction of the font-nominal character height.

text_color
This attribute contains the color value to use when drawing text and annotation text primitives.

char_height
This attribute contains the character height to use when drawing text primitives. The character height is
specified in modeling coordinates.

char_up_vector
This attribute contains the character up vector to use when drawing text primitives. The up vector is specified
in the text local coordinate system. The axes of this coordinate system are determined by the direction vectors
specified with the text primitive.

text_path
This attribute contains the text path to use when drawing text primitives (i.e., the writing path of the text
string).

text_alignment
This attribute contains the horizontal and vertical alignment to use when drawing text primitives.

atext_height
This attribute contains the character height to use when drawing annotation text primitives. The character
height is specified in normalized projection coordinates.

atext_up_vector
This attribute contains the character up vector to use when drawing annotation text primitives. The up vector
is specified in the annotation text local coordinate system, which is parallel to the display surface.

atext_path
This attribute contains the text path to use when drawing annotation text primitives (i.e. the writing path of the
annotation text string).

atext_alignment
This attribute contains the horizontal and vertical alignment to use when drawing annotation text primitives.

atext_style
This attribute contains the annotation text style to use when drawing annotation text primitives. See the
"Extension Information" section for descriptions of the registered annotation text styles.

text_bundle_index
This attribute contains the lookup table index to be used to obtain bundled text attributes from the text bundle
table.

line_type
This attribute contains the type to use when drawing polyline and curve primitives. See the "Extension
Information" section for descriptions of the registered line types.

line_width
This attribute contains the width to use when drawing polyline or curve primitives. This is the scale factor
applied to the width of the polyline or curve primitive when it is to be rendered. Line width is applied in 2D
raster coordinates after the primitive has been transformed from 3D space to 2D raster space.

line_color
This attribute contains the color value to use when drawing polyline and curve primitives.

PEX Version 5.0P, 14-September-1990



-- --

-72-

curve_approx
This attribute contains the curve approximation to use when drawing curve primitives. It sets the curve
approximation method and the tolerance value for drawing curves. See the "Extension Information" section
for descriptions of the registered curve approximation methods and how the curve tolerance is used with each
type.

polyline_interp
This attribute contains the polyline interpolation method to use when drawing polyline primitives. See the
"Extension Information" section for descriptions of the registered polyline interpolation methods.

line_bundle_index
This attribute contains the lookup table index to be used to obtain bundled polyline and curve attributes from
the line bundle table.

interior_style
This attribute contains the interior style to use when drawing surface primitives. See the "Extension
Information" section for descriptions of the registered interior styles.

interior_style_index
This attribute contains the index to use if the interior style is of type Pattern or Hatch. The interior style
index contains the table index of the pattern table entry to be used when the interior style is Pattern, and the
hatch table enumerated type index to be used when the interior style is Hatch.

surface_color
This attribute contains the color value to use when drawing surface primitives.

reflection_attr
This attribute contains the ambient coefficient; the diffuse coefficient; the specular coefficient, concentration,
and color; and the transmission coefficient that are to be used in the light source shading computations when
rendering surfaces (area-defining primitives). The specular color attribute provides an additional coefficient
per primary for use in the specular reflection computation. This allows highlights to be computed that are
some color other than that of the light source. The specular concentration defines the sharpness of the
specular highlights or the "shininess" of a surface. This value is typically used as the exponent in the specular
reflection term of lighting equations. If specular_conc = zero, specular highlights are very broad. If
specular_conc is much greater than zero, the highlights are very small and sharp, as if the surface was very
shiny. The transmission coefficient indicates the amount of light that passes through a surface. A
transmission coefficient of zero indicates that the surface is opaque (lets no light through). A transmission
coefficient of 1.0 indicates that the surface is totally invisible (lets all light through).

reflection_model
This attribute contains the reflection model to use when drawing surface primitives. See the "Extension
Information" section for descriptions of the registered reflection models.

surface_interp
This attribute contains the surface interpolation method to use when drawing surface primitives. See the
"Extension Information" section for descriptions of the registered surface interpolation methods.

bf_interior_style
This attribute contains the interior style to use when drawing backfacing surface primitives. See the
"Extension Information" section for descriptions of the registered interior styles.

bf_interior_style_index
This attribute contains the index to use for backfacing surface primitives if the interior style is of type Pattern
or Hatch. The interior style index contains the table index of the pattern table entry to be used when the
interior style is Pattern, and the hatch table enumerated type index to be used when the interior style is Hatch.

bf_surface_color
This attribute contains the color value to use when rendering backfacing surface primitives.

PEX Version 5.0P, 14-September-1990



-- --

-73-

bf_reflection_attr
This attribute contains the reflection values to be used when rendering backfacing surfaces. |

bf_reflection_model
This attribute contains the reflection model to use when drawing backfacing surface primitives. See the
"Extension Information" section for descriptions of the registered reflection models.

bf_surface_interp
This attribute contains the surface interpolation method to use when drawing backfacing surface primitives.
See the "Extension Information" section for descriptions of the registered surface interpolation methods.

surface_approx
This attribute contains the surface approximation and the tolerance to use when drawing surface primitives.
See the "Extension Information" section for descriptions of the registered surface approximation methods and
of how the surface tolerance is used with each of them.

culling_mode
This attribute contains the culling mode that is used in processing backfacing surfaces. If the culling mode is
BackFaces, all back-facing surfaces will be culled and only front-facing surfaces will be rendered. If the
culling mode is FrontFaces, all front-facing surfaces will be culled and only back-facing surfaces will be
rendered. If the culling mode is None, both front- and back-facing polygons will be rendered.

distinguish
This attribute contains the distinguish mode that is used in processing backfacing surfaces. This flag selects
whether back-facing surfaces are rendered with the back-face surface attributes or the front-face surface
attributes. If distinguish is True, then back-face attributes are used to render the surface. If distinguish is
False, then front-face attributes are used to render the surface.

pattern_size
This attribute contains the pattern size to use when drawing surface primitives. The value <x,0> will be used |
as the pattern width vector and the value <0,y> will be used as the pattern height vector. If the interior style is |
Pattern, the renderer attempts to use these values, plus the pattern reference point and the pattern reference
vectors, to position, scale, and rotate the pattern on the surface.

pattern_ref_pt
This attribute contains the pattern reference point to use when drawing surface primitives. When the interior |
style is Pattern, the renderer attempts to use the pattern reference point, reference vectors, and the pattern size
to position and scale the pattern on the surface.

pattern_ref_vec1

This attribute contains the first of two pattern reference vectors to be used when interior style is Pattern.
When the interior style is Pattern, the renderer attempts to use the two pattern reference vectors, the pattern
reference point, and the pattern size to position, scale, and rotate the pattern on the surface.

pattern_ref_vec2

This attribute contains the second of two pattern reference vectors to be used when interior style is Pattern.
When the interior style is Pattern, the renderer attempts to use the two pattern reference vectors, the pattern
reference point, and the pattern size to position, scale, and rotate the pattern on the surface.

interior_bundle_index
This attribute contains the lookup table index to be used to obtain bundled interior attributes from the interior
bundle table.

surface_edges
This attribute contains the surface edge flag attribute, which is used to enable or disable surface edge drawing.
If surface_edges is Off, surface edge drawing is disabled. If surface_edges is On, surface edge drawing is
enabled. Surface edges are drawn using the surface edge color, surface edge type, and surface edge width.

PEX Version 5.0P, 14-September-1990



-- --

-74-

surface_edge_type
This attribute contains the edge type to use when drawing surface edges. See the "Extension Information"
section for descriptions of the registered surface edge types.

surface_edge_width
This attribute contains the edge width to use when drawing surface edges. This is the scale factor applied to
the width of a surface edge when a surface edge is to be rendered. It is applied in 2D raster coordinates after
a surface edge primitive has been transformed from 3D space to 2D raster space.

surface_edge_color
This attribute contains the color value to use when drawing surface edges.

edge_bundle_index
This attribute contains the lookup table index to be used to obtain bundled surface edge attributes from the
surface edge bundle table.

local_transform
This attribute contains the local modeling transformation matrix that is used when drawing output primitives.

global_transform
This attribute contains the global modeling transformation matrix that is used when drawing output primitives.

model_clip
This attribute contains the model clipping flag that indicates whether or not to perform modeling clipping
when drawing output primitives.

model_clip_volume
This attribute contains the model clipping volume that is used whenever modeling clipping is enabled.

view_index
This attribute contains the lookup table index to be used to obtain viewing attributes from the view table.

light_state
This attribute contains a list of table indices that specify those light sources that are enabled ("turned on").
Any light whose table index is not in this list is considered disabled ("turned off").

depth_cue_index
This attribute contains the lookup table index to be used to obtain bundled depth-cue attributes from the
depth-cue bundle table.

color_approx_index
This attribute contains the lookup table index to be used to obtain the color approximation parameters from
the color approximation table.

rdr_color_model
This attribute contains the rendering color model that is to be used during the interpolation of shaded
primitives. See the "Extension Information" section for descriptions of the registered rendering color models.

psurf_char
This attribute contains the parametric surface characteristics that are to be used when rendering surfaces. The
psc_type field specifies the parametric surface characteristics type to be used when rendering surfaces. The
psc_data field supplies additional data that may be used. See the "Extension Information" section for
descriptions of the registered parametric surface characteristics types.

asfs
This attribute contains an aspect source flag (asf) for each attribute that can be obtained from a bundle lookup
table. When rendering, if the value for an asf is set to Individual, the value for the corresponding attribute
will be obtained directly from the current value within the renderer. If the value for the asf is set to Bundled,
the value for the attribute will be obtained from the bundle lookup table. When setting asfs, a separate mask

PEX Version 5.0P, 14-September-1990



-- --

-75-

(enables) is used to indicate which asfs are actually to be modified. The value to which an asf is to be |
modified will then be taken from the corresponding bit in the asfs bitmask. The enables field of the
ASF_SPECIFIER is meaningful only when creating or changing attributes of a pipeline context. During |
copying, all asf values are copied, and when queried, all asf values are returned and a value with all defined |
asfs set is returned for the enables bitmask. (This implies that it is not necessary to consider the enables field
to be part of the state that is saved and restored while rendering.)

pick_id
This attribute contains the pick ID, which is used in conjunction with picking operations.

HLHSR_identifier
This attribute contains an HLHSR identifier. The HLHSR identifier has an implementation-dependent
meaning. Conceptually, this attribute is bound to all output primitives as they enter the rendering pipeline.

name_set
This attribute contains a reference to a name set resource. When attributes of a pipeline context are copied to
a renderer, the contents of this name set are copied to the renderer. |

PEX Version 5.0P, 14-September-1990



-- --

-76-

5.1. Pipeline Context Resource Management

The pipeline context is an X11 resource and carries all of the responsibilities and access rights of X11 resources.
These requests manage the creation, freeing, and copying of pipeline contexts.

5.1.1. Create Pipeline Context

Name:
PEXCreatePipelineContext

Request:
fp_format : FLOAT_FORMAT
pc_id : PIPELINE_CONTEXT_ID
item_mask : PC_BITMASK
item_list : LISTofVALUE

Errors:
IDChoice, Value, FloatingPointFormat, ColorType, Alloc

Description:

This request creates a pipeline context resource for the specified pc_id. The item_mask defines those
pipeline context attributes that are to be explicitly set at the time the resource is created. The item_list
contains the corresponding list of values used to modify the newly-created pipeline context. Floating point
values in item_list will be in the floating point format specified in fp_format. Similarly, color values in
item_list will be the color type specified by color_type.

5.1.2. Copy Pipeline Context

Name:
PEXCopyPipelineContext

Request:
src_pc_id : PIPELINE_CONTEXT_ID
dest_pc_id : PIPELINE_CONTEXT_ID
item_mask : PC_BITMASK

Errors:
PipelineContext, Value

Description:

This request copies the source pipeline context src_pc_id to a destination pipeline context dest_pc_id. The
dest_pc_id must already exist as a valid resource. The item_mask indicates which values in the pipeline
context will be copied.

PEX Version 5.0P, 14-September-1990



-- --

-77-

5.1.3. Free Pipeline Context

Name:
PEXFreePipelineContext

Request:
pc_id : PIPELINE_CONTEXT_ID

Errors:
PipelineContext

Description:

This request deletes the association between the resource ID and the pipeline context. The pipeline context
storage will be freed when no other resource references it.

PEX Version 5.0P, 14-September-1990



-- --

-78-

5.2. Pipeline Context Inquiry

This section defines the requests that can be used to inquire pipeline context attributes.

5.2.1. Get Pipeline Context

Name:
PEXGetPipelineContext

Request:
fp_format : FLOAT_FORMAT
pc_id : PIPELINE_CONTEXT_ID
item_mask : PC_BITMASK

Reply:
item_list : LISTofVALUE

Errors:
PipelineContext, FloatingPointFormat, Value

Description:

This request will return components of the pipeline context specified by pc_id. The item_mask specifies
which components are to be inquired and returned. The specified attributes of the pipeline context will be
returned in item_list. Floating point values in item_list will be returned in the floating point format |
specified in fp_format.

5.3. Pipeline Context Modification

This section defines the requests that can be used to modify attributes of pipeline context resources.

5.3.1. Change Pipeline Context

Name:
PEXChangePipelineContext

Request:
fp_format : FLOAT_FORMAT
pc_id : PIPELINE_CONTEXT_ID
item_mask : PC_BITMASK
item_list : LISTofVALUE

Errors:
PipelineContext, Value, FloatingPointFormat, ColorType

Description:

This request will modify components of the pipeline context specified by pc_id. The item_mask specifies
which components are to be modified. The values for the attributes that are to be modified are contained in
item_list. Floating point values in item_list will be in the floating point format specified in fp_format. |
Similarly, color values in item_list will be the color type specified by color_type.

PEX Version 5.0P, 14-September-1990



-- --

-79-

6. Renderers

A renderer is a PEX resource that can be created for the purpose of doing 3D rendering. A renderer consists of |
resource IDs for various tables and name sets, the resource ID of a pipeline context from which the initial rendering
pipeline attributes will be copied, and other attributes. A renderer also manages the HLHSR buffer needed for some
hidden line/hidden surface algorithms. A renderer is made ready for rendering by the PEXBeginRendering request
(a PEXBeginRendering is also performed implicitly as part of the PEXRenderNetwork request). A PEX
implementation may choose to allow certain renderer attributes to be bound only at the time of a
PEXBeginRendering request or at anytime during the lifetime of the renderer. To obtain information about how
renderer attributes are bound for a particular PEX implementation, the PEXGetRendererDynamics request should
be used.

Some renderer resource requests require an item_mask parameter. Each bit in the item_mask indicates whether or
not the corresponding attribute is to be set/queried. There is a corresponding entry in the item_list for each set bit in
item_mask. It is therefore possible to set/query one or many renderer attributes with a single request.

Any of a renderer’s attributes that are resource IDs that are not explicitly specified will be set to the default value of |
Null when the renderer is created. During rendering operations, if a renderer makes an attempt to access an attribute
from a lookup table whose resource ID is Null, the default attributes for the lookup table (as listed in Appendix D)
will be used. If a renderer makes an attempt to read from a name set whose resource ID is Null, the result will be as
if the name set was empty. If the renderer’s pipeline context attribute contains the resource ID Null, the default
values for pipeline context attributes will be copied into the renderer whenever a PEXBeginRendering request is
performed.

Pipeline context, lookup table, and name set resources can be bound to a renderer and then freed. When this
happens, the contents of these resources will remain, since they are still being referenced by the renderer. However,
when that renderer’s attributes are queried, the value AlreadyFreed will be returned for those resources that have
been freed and thus no longer have a valid resource ID by which they can be referenced.

If a window that is associated with a renderer is destroyed or resized while the renderer is in the Rendering state, an
implicit PEXEndRendering is performed by the server with flush equal to False in order to return the renderer to
the Idle state. If the window is moved, exposed, or occluded while the renderer is in the Rendering state, it must
continue to process output commands using the newly-modified window hierarchy until the next explicit or implicit
PEXEndRendering occurs.

If the current HLHSR mode indicates z-buffering should be performed, a z-buffer suitable for use with the specified
drawable is allocated and bound to the renderer whenever an implicit or explicit PEXBeginRendering occurs. If
the z-buffer could not be allocated, an Alloc error is generated and the rendering is aborted. The z-buffer will be
cleared to infinity. The value of infinity is implementation-dependent. Z values will be set to infinity only in the
region specified by the renderer’s current clip list.

During rendering, primitives will be clipped by the renderer’s clip list. If z-buffering is enabled, primitives closer to
the eye will be drawn over primitives that are further away. When primitives have the same z values, it is |
implementation-dependent which primitive will get drawn.

A z-buffer will not be deallocated when an explicit or implicit PEXEndRendering occurs. It remains bound to the
renderer until the renderer is freed. When the next PEXBeginRendering occurs, an attempt will be made to reuse
the z-buffer. If it cannot be reused (for instance, if the previous and current drawable are a different size), it will be
deallocated and a z-buffer suitable for the new drawable will be allocated.

If a window is resized or destroyed during rendering, the server may abort the rendering and optionally deallocate
the z-buffer. If a rendering is aborted, all subsequent output and traversal commands (e.g.,
PEXRenderOutputCommands, PEXBeginStructure, PEXEndStructure) are ignored, up to and including the
final PEXEndRendering. No errors are generated; however, at a subsequent PEXBeginRendering, an Alloc error

PEX Version 5.0P, 14-September-1990



-- --

-80-

may be generated if the z-buffer was deallocated due to a resize but could not be reallocated for the new rendering.

The renderer components, in order, are listed in the following table. The abbreviation "imp. dep." means that the
default value is implementation-dependent.

Attribute Name Data Type Default Value
pipeline_context PIPELINE_CONTEXT_ID Null
current_path LISTofELEMENT_REF Null
renderer_state RENDERER_STATE Idle
marker_bundle LOOKUP_TABLE_ID Null
text_bundle LOOKUP_TABLE_ID Null
line_bundle LOOKUP_TABLE_ID Null
interior_bundle LOOKUP_TABLE_ID Null
edge_bundle LOOKUP_TABLE_ID Null
view_table LOOKUP_TABLE_ID Null
color_table LOOKUP_TABLE_ID Null
depth_cue_table LOOKUP_TABLE_ID Null
light_table LOOKUP_TABLE_ID Null
color_approx_table LOOKUP_TABLE_ID Null
pattern_table LOOKUP_TABLE_ID Null
text_font_table LOOKUP_TABLE_ID Null
highlight_inclusion NAME_SET_ID Null
highlight_exclusion NAME_SET_ID Null
invisibility_inclusion NAME_SET_ID Null
invisibility_exclusion NAME_SET_ID Null
HLHSR_mode HLHSR_MODE 1
NPC_subvolume NPC_SUBVOLUME {(0.0,0.0,0.0),(1.0,1.0,1.0)}
viewport VIEWPORT {imp. dep., imp. dep., True}
clip_list LISTofDEVICE_RECT Null

The attributes of the renderer resource are defined as follows:

pipeline_context
This attribute specifies the resource ID of the pipeline context from which initial rendering pipeline attribute
values will be copied whenever an explicit or implicit PEXBeginRendering request is executed.

current_path
This attribute contains a list of element references for keeping track of paths for client-side traversal.

renderer_state
This attribute contains the current state of the renderer. The renderer_state is set to Rendering whenever an
explicit or implicit PEXBeginRendering request is processed, and to Idle whenever a explicit or implicit
PEXEndRendering request is processed.

marker_bundle
This attribute contains the resource ID of the marker bundle lookup table to be used when rendering.

text_bundle
This attribute contains the resource ID of the text bundle lookup table to be used when rendering.

line_bundle
This attribute contains the resource ID of the line bundle lookup table to be used when rendering.

interior_bundle
This attribute contains the resource ID of the interior bundle lookup table to be used when rendering.

PEX Version 5.0P, 14-September-1990



-- --

-81-

edge_bundle
This attribute contains the resource ID of the edge bundle lookup table to be used when rendering.

view_table
This attribute contains the resource ID of the view lookup table to be used when rendering.

color_table
This attribute contains the resource ID of the color lookup table to be used to resolve references to indexed
colors.

depth_cue_table
This attribute contains the resource ID of the depth-cue lookup table to be used when rendering.

light_table
This attribute contains the resource ID of the light lookup table to be used when rendering.

color_approx_table
This attribute contains the resource ID of the color approximation lookup table to be used during the color
approximation stage of the rendering pipeline.

pattern_table
This attribute contains the resource ID of the lookup table to be used when referencing patterns.

text_font_table
This attribute contains the resource ID of the lookup table to be used when referencing text fonts.

highlight_inclusion
This attribute contains the resource ID of the name set to be used as the highlight inclusion set.

highlight_exclusion
This attribute contains the resource ID of the name set to be used as the highlight exclusion set.

invisibility_inclusion
This attribute contains the resource ID of the name set to be used as the invisibility inclusion set.

invisibility_exclusion
This attribute contains the resource ID of the name set to be used as the invisibility exclusion set.

HLHSR_mode
This attribute contains the hidden line/hidden surface method used when resolving visibility of overlapping
primitives. The PEXGetRendererDynamics request can be used to determine whether changing the
HLHSR_mode while the renderer_state attribute is set to Rendering has any effect.

NPC_subvolume
This attribute contains the normalized project coordinates for the sub-volume space that is to be mapped to the
viewport.

viewport
This attribute is used to describe the area within a drawable in which 3D graphics primitives may appear. The
viewport coordinates are specified in device coordinates, which have an x,y offset (in pixels) from the lower
left corner of the drawable. It is permissible to specify a viewport with boundaries outside of the drawable.
Geometry that is mapped to values outside the drawable will be clipped. Viewport z values must be in the
range [0-1.0], where z=0 maps to the device-coordinate z value representing objects that are furthest from the
viewing position, and z=1 maps to the device-coordinate value representing objects that are closest to the
viewing position. Depending on the dynamics of the viewport attribute (see PEXGetRendererDynamics),
the values that define a viewport may be bound at any time, or they may take effect only at the time of a
PEXBeginRendering. Whenever the viewport values are bound, the viewport’s use_drawable flag is
examined first. If it is set to True, the viewport width and height are obtained from the drawable’s current
width and height. The viewport’s min z and max z will be obtained from the values specified in the

PEX Version 5.0P, 14-September-1990



-- --

-82-

VIEWPORT structure that is passed (the min x/y and max x/y values that are passed will be ignored). The
viewport will be set to the largest rectangle, anchored at the lower left corner, that achieves an isotropic
mapping to that renderer’s NPC_subvolume. If the use_drawable flag is False, the viewport size is set to the
explicit values in the viewport structure. The viewport will remain in the same position relative to the lower
left hand corner of the drawable after a resize event has occurred.

clip_list
This attribute contains a list of rectangles in device coordinates that define the portions of the drawable in
which rendering is enabled. If the list is Null, then all of the pixels on the drawable may be overwritten
during rendering. If the list is not Null, the renderer may only render on those pixels that are within the
rectangles in the list. The rectangles should be non-overlapping, or the graphics results will be undefined.
Pixels that are outside of all of the rectangles in clip_list are effectively "write-protected". The rectangles in
the clip list are defined in device coordinates (0,0 is at the lower left hand corner of the window) and will
remain in the same position relative to the lower left hand corner of the drawable after a resize has occurred.
(Note: If a z-buffering algorithm is used, only those pixels under the rectangles in the clip list will have their z
values initialized when a PEXBeginRendering or a PEXRenderNetwork request is issued.)

PEX Version 5.0P, 14-September-1990



-- --

-83-

6.1. Renderer Resource Management

The renderer is an X11 resource and carries all of the responsibilities and access rights of X11 resources. These
requests manage the creation and freeing of renderer resources.

6.1.1. Create Renderer

Name:
PEXCreateRenderer

Request:
fp_format : FLOAT_FORMAT
rdr_id : RENDERER_ID
drawable_example : DRAWABLE_ID
item_mask : BITMASK
item_list : LISTofVALUE

Errors:
IDChoice, Drawable, PipelineContext, NameSet, LookupTable, FloatingPointFormat, Value, Alloc, Match

Description:

This request creates a renderer resource for the specified rdr_id. It can be used to render onto drawables
with the same root window and depth as the example drawable specified by drawable_example. The
item_mask defines those renderer attributes that are to be explicitly set at the time the resource is created.
The item_list contains the corresponding list of values used to modify the newly-created renderer. Floating
point values in item_list will be in the floating point format specified in fp_format. |

6.1.2. Free Renderer

Name:
PEXFreeRenderer

Request:
rdr_id : RENDERER_ID

Errors:
Renderer

Description:

This request deletes the specified renderer resource and frees the storage associated with it. If the
renderer’s renderer_state attribute is set to Rendering when this request is processed, an implicit
PEXEndRendering request with flush equal to False will be performed before the renderer is freed.

PEX Version 5.0P, 14-September-1990



-- --

-84-

6.2. Renderer Modification

The requests in this section can be used to modify attributes of renderer resources.

6.2.1. Change Renderer

Name:
PEXChangeRenderer

Request:
fp_format : FLOAT_FORMAT
rdr_id : RENDERER_ID
item_mask : BITMASK
item_list : LISTofVALUE

Errors:
Renderer, Match, Value, FloatingPointFormat, NameSet, LookupTable, PipelineContext

Description:

This request changes components of a renderer. The item_mask and item_list specify which components
are to be changed. Each bit in the item_mask indicates whether or not there is a corresponding entry in the
item_list. It is therefore possible to modify one or many renderer attributes with a PEXChangeRenderer
request. A renderer’s current_path and renderer_state attribute are read-only, therefore attempts to modify
them will be ignored. Floating point values in item_list will be in the floating point format specified in |
fp_format.

6.3. Renderer Inquiry

The requests in this section can be used to inquire renderer attributes.

6.3.1. Get Renderer Attributes

Name:
PEXGetRendererAttributes

Request:
fp_format : FLOAT_FORMAT
rdr_id : RENDERER_ID
item_mask : BITMASK

Reply:
item_list : LISTofVALUE

Errors:
Renderer, FloatingPointFormat, Value

Description:

This request will return components of the renderer specified by rdr_id. The item_mask specifies which
components are to be inquired and returned. The specified attributes of the renderer will be returned in
item_list. Floating point values in item_list will be returned in the floating point format specified in |
fp_format. (The values returned are those that were last set by the client. Depending on the dynamics of
the renderer, these may or may not be the values currently in use. See PEXGetRendererDynamics.)

PEX Version 5.0P, 14-September-1990



-- --

-85-

6.3.2. Get Renderer Dynamics

Name:
PEXGetRendererDynamics

Request:
rdr_id : RENDERER_ID

Reply:
tables : BITMASK
namesets : BITMASK
attributes : BITMASK

Errors:
Renderer

Description:

This request will return the dynamics (binding times) for all of the attributes of the specified renderer. The
tables bitmask has the following bits defined:

MarkerBundle MarkerBundleContents
TextBundle TextBundleContents
LineBundle LineBundleContents
InteriorBundle InteriorBundleContents
EdgeBundle EdgeBundleContents
ViewTable ViewTableContents
ColorTable ColorTableContents
DepthCueTable DepthCueTableContents
LightTable LightTableContents
ColorApproxTable ColorApproxTableContents
PatternTable PatternTableContents
TextFontTable TextFontTableContents

The namesets bitmask has the following bits defined:

HighlightNameset HighlightNamesetContents
InvisibilityNameset InvisibilityNamesetContents

The attributes bitmask has the following bits defined:

HLHSRMode
NPCSubvolume
Viewport
ClipList

For each defined bit, a value of zero indicates that the specified attribute may be modified at any time, and
the contents will take effect immediately. A value of one indicates that the specified attribute may not be
modified dynamically. A change to such an attribute is said to be "pending" and will take effect at the next
explicit or implicit PEXBeginRendering. Implementations that allow attributes such as HLHSRMode to
be modified at any time must specify the semantics of changing between all possible supported values for
that attribute.

PEX Version 5.0P, 14-September-1990



-- --

-86-

6.4. Client-Side Traversal Support

These requests provide support for client-side structure traversal. PEX currently provides only rendering support
for client-side traversal. In this mode, picking and searching must be done by the client.

6.4.1. Begin Rendering

Name:
PEXBeginRendering

Request:
rdr_id : RENDERER_ID
drawable_id : DRAWABLE_ID

Errors:
Renderer, Drawable, Match, Alloc, RendererState

Description:

This request causes rendering to begin on the drawable specified by drawable_id. The output of the
renderer specified by rdr_id is bound to that drawable until a PEXEndRendering request is processed.
The initial rendering pipeline attributes are copied into the renderer from the pipeline context specified by
the renderer’s pipeline_context attribute. If pipeline_context is Null, the default values for all of the
attributes in a pipeline context are copied into the renderer instead. The renderer’s renderer_state attribute
is set to Rendering and its current_path attribute is set to the null list.

If the specified drawable does not have the same root and depth as the drawable that was passed in the
request to create the renderer, a Match error will be generated. If the renderer’s renderer_state attribute is |
currently set to Rendering, an implicit PEXEndRendering request is performed (with flush equal to
False). The PEXBeginRendering request will then be executed, and a RendererState error will be
returned after executing the request.

6.4.2. End Rendering

Name:
PEXEndRendering

Request:
rdr_id : RENDERER_ID
flush : BOOLEAN

Errors:
Renderer

Description:

If flush is True, this request causes any pending output for the renderer specified by rdr_id to be rendered
onto the drawable. If flush is False, pending output for the renderer is discarded. In either case, the
renderer_state attribute of the renderer is set to Idle. If the renderer_state attribute is currently Idle (i.e.,
no rendering is in progress or the rendering was aborted due to a resize), the request is ignored and no error
is generated.

PEX Version 5.0P, 14-September-1990



-- --

-87-

6.4.3. Begin Structure

Name:
PEXBeginStructure

Request:
rdr_id : RENDERER_ID
s_id : CARD32

Errors:
Renderer

Description:

This request causes the rendering pipeline attributes in the renderer specified by rdr_id to be saved. The
attributes of the renderer resource itself (i.e., the attributes of a renderer that can be set/queried, including |
table and name set resource IDs) are not saved. The element offset of the last entry in the renderer’s
current_path is incremented (to account for the client-side "execute structure" command), then the name
specified by s_id together with an element offset of zero (indicating an empty structure) is appended to the |
current_path attribute. Each subsequent output command will cause the element offset to be incremented
by one until the next PEXBeginStructure request or the next PEXEndStructure request.

After saving the current rendering pipeline attributes, the global_transform attribute is set to the matrix
computed by concatenating the current local_transform and the current global_transform matrices. Then
the local_transform matrix is set to the identity matrix.

6.4.4. End Structure

Name:
PEXEndStructure

Request:
rdr_id : RENDERER_ID

Errors:
Renderer, RendererState

Description:

This request restores the last-saved rendering pipeline attributes in the renderer specified by rdr_id. In
addition, the last element reference in the renderer’s current_path is removed, and subsequent output
commands will cause the element offset of the element reference at the end of the list to be incremented.
This request itself does not cause an increment to current_path.

PEX Version 5.0P, 14-September-1990



-- --

-88-

6.5. Rendering Commands

These requests cause output commands to be processed by a renderer.

6.5.1. Render Output Commands

Name:
PEXRenderOutputCommands

Request:
fp_format : FLOAT_FORMAT
rdr_id : RENDERER_ID
cmds : LISTofOUTPUT_CMD

Errors:
Renderer, FloatingPointFormat, OutputCommand

Description:

If the renderer_state attribute of the renderer specified by rdr_id is set to Rendering, the output commands
in cmds will be immediately processed. If the renderer_state attribute is set to Idle, the commands will be
ignored. Floating point values in cmds will be in the floating point format specified in fp_format. The
formats for the various types of output commands can be found Section 3 - Output Commands. Output
commands are processed by the server in order until one is found to be in error, or until the entire list has
been processed. The erroneous output command and all others following it in the request are ignored, and
an OutputCommand error is returned to the client. The current_path attribute of the renderer is updated to
reflect only those output commands actually processed.

6.5.2. Render Network

Name:
PEXRenderNetwork

Request:
rdr_id : RENDERER_ID
drawable_id : DRAWABLE_ID
s_id : STRUCTURE_ID

Errors:
Renderer, Drawable, Structure, RendererState

Description:

This request causes the structure network rooted at s_id to be traversed and rendered on drawable_id, using
the renderer specified by rdr_id.

This functionality is equivalent to the following (pseudo-)requests:

PEXBeginRendering(rdr_id, drawable_id)
PEXRenderOutputCommands(rdr_id, all elements of s_id)
PEXEndRendering(rdr_id, True)

PEX Version 5.0P, 14-September-1990



-- --

-89-

7. Structures

This section details the usage and management of structure resources. A structure is a resource which stores output
commands for later execution. Structures have two settable attributes and a number of attributes that can only be
inquired. The modifiable attributes are:

element_ptr
This attribute contains the offset of an element in the structure. Elements are numbered consecutively, |
starting at offset one. The element pointer determines the position in the structure at which the next editing or
element query operation will occur. Whenever a structure is used as a destination in a structure editing
request, its element pointer attribute will be updated as a side effect of the operation. When a structure is
created, its element pointer is set to zero.

editing_mode
The editing mode attribute specifies how editing operations will affect the structure. If the mode is
StructureInsert, subsequent requests to create structure elements will cause elements to be inserted into the
structure. Elements will be inserted into the structure after the structure element specified by the element
pointer. The element pointer will then be incremented by the number of elements inserted. If the mode is
StructureReplace, output requests used to create structure elements will cause structure elements to replace
elements starting at the location specified by the element pointer. When a structure is created, its editing
mode is set to StructureInsert.

A structure’s non-modifiable attributes include its size (number of elements and length in four byte units if it were to
be returned to the client) and the number of times it is referenced by other structures. Additional information about
structures (ancestors, descendants, etc.) is also available and can be inquired separately.

7.1. Structure Resource Management

A structure is an X11 resource and carries all of the responsibilities and access rights of X11 resources. These
requests manage the creation, deletion, and general manipulation of structures.

7.1.1. Create Structure

Name:
PEXCreateStructure

Request:
s_id : STRUCTURE_ID

Errors:
IDChoice, Alloc

Description:

This request creates a structure resource with the specified s_id.

PEX Version 5.0P, 14-September-1990



-- --

-90-

7.1.2. Copy Structure

Name:
PEXCopyStructure

Request:
src_s_id : STRUCTURE_ID
dest_s_id : STRUCTURE_ID

Errors:
Structure

Description:

The structure elements in src_s_id are copied to dest_s_id. Any structure elements in dest_s_id are deleted
prior to the copy operation. The destination structure must already exist as a valid resource. Src_s_id’s
element pointer and editing mode are also copied to dest_s_id.

7.1.3. Destroy Structures

Name:
PEXDestroyStructures

Request:
list : LISTofSTRUCTURE_ID

Errors:
Structure

Description:

This request destroys each of the structure resources that is specified in list and removes all references to it
in the server. Any structure elements that reference a structure in list will be destroyed, and any structure
in list that is posted to a PHIGS workstation resource will be unposted. Any paths in search contexts or
pick measures that contain the resource ID of any structure in list may still be queried. Such paths may still
contain the resource ID of a structure after it has been destroyed. However, any attempts to perform a
PEXSearchNetwork or a PEXUpdatePickMeasure using such a path will result in a Path error being |
generated.

Any structure that had structure elements removed due to a PEXDestroyStructures request will have their
element pointer modified in the following way. If the element pointer is at a position before any of the
elements that were deleted, the element pointer remains unchanged. If the element pointer was at the
position of an element that was deleted, it will be set to the previous element. If the element pointer was
after elements that were deleted, it will be updated so as to point at the same element it pointed to prior to
the PEXDestroyStructures request.

PEX Version 5.0P, 14-September-1990



-- --

-91-

7.2. Structure Inquiry

These requests inquire attributes and other information about structures.

7.2.1. Get Structure Info

Name:
PEXGetStructureInfo

Request:
fp_format : FLOAT_FORMAT
s_id : STRUCTURE_ID
item_mask : BITMASK

Reply:
editing_mode : EDIT_MODE
element_ptr : CARD32
num_elements : CARD32
total_length : CARD32
has_refs : BOOLEAN

Errors:
Structure, FloatingPointFormat, Value

Description:

This request returns information about the structure specified by s_id. Item_mask indicates which fields in
the reply are required by the client. Items indicated by item_mask will have valid values returned, and the
remaining values will be returned as undefined values. The current value of the structure’s editing mode
attribute will be returned in editing_mode. The current value of the structure’s element pointer attribute will
be returned in element_ptr. The number of structure elements in the specified structure will be returned in
num_elements. If the structure is empty, num_elements will be zero. The total number of four-byte units
necessary to store all elements of the structure (on the client side) will be returned in total_length. (This
provides the client the information needed to allocate memory prior to doing a PEXFetchElements
request.) If there are any "execute structure" elements in other structure resources that reference s_id,
has_refs will be returned as True, otherwise it will be returned as False. The information returned will be
computed as if the floating point type in fp_format were being used to return the data.

PEX Version 5.0P, 14-September-1990



-- --

-92-

7.2.2. Get Element Info

Name:
PEXGetElementInfo

Request:
fp_format : FLOAT_FORMAT
s_id : STRUCTURE_ID
range : ELEMENT_RANGE

Reply:
info : LISTofELEMENT_INFO

Errors:
Structure, Value, FloatingPointFormat

Description:

This request returns information about elements in the structure specified by s_id. The offsets that define
the range of elements about which information is to be obtained are computed using the positions in range
in the following fashion. If whence is Beginning, the computed offset is just the value specified by offset.
If whence is Current, the offset is computed by adding offset to s_id’s element pointer. If whence is End,
the offset is computed by adding offset to the number of elements in the structure. Offset can be a negative
number.

If either computed offset is less than zero, it will be set to zero before obtaining the element information. If
either computed offset is greater than the number of elements in the structure, it will be set to the offset of
the last structure element in the structure. The request returns each element’s ELEMENT_TYPE field, and
the length of the element in units of four bytes. The sum of the lengths of all elements in the structure will
be equal to the length that can be inquired with the PEXGetStructureInfo request. The information
returned will be computed as if the floating point type in fp_format were being used to return the data. No |
information will be returned for inquiries on element offset zero. The element pointer attribute of s_id is
not affected by this request.

7.2.3. Get Structures In Network

Name:
PEXGetStructuresInNetwork

Request:
s_id : STRUCTURE_ID
which : {All, NoCrossRefs}

Reply:
structures : LISTofSTRUCTURE_ID

Errors:
Structure, Value

Description:

This request returns a list of unique structure resource IDs that are referenced in the structure network |
rooted at s_id. If which is All, all of the structure resources referenced in the structure network rooted at
s_id will be returned in the list structures. If which is NoCrossRefs, only the IDs of structures in the
network that aren’t referenced outside the specified structure network are returned. S_id will always be
returned in the list, unless s_id is an invalid structure ID, in which case the returned list will be empty.

PEX Version 5.0P, 14-September-1990



-- --

-93-

7.2.4. Get Ancestors

Name:
PEXGetAncestors

Request:
s_id : STRUCTURE_ID
path_part : {TopPart, BottomPart}
path_depth : CARD32

Reply:
paths : LISTofLISTofELEMENT_REF

Errors:
Structure, Value

Description:

This request returns unique paths in the structure hierarchy that lead to s_id. Paths are returned as a list of
structure id/element offset pairs that are in the order from the root structure down to s_id. For full paths,
the last entry in each path would have the structure ID equal to s_id and the offset equal to zero. The
path_depth indicates the maximum length (number of structure id/element offset pairs) of each path, except
that path_depth = 0 means that the full path is to be returned. The path_part indicates whether the head or
the tail of each path is to be returned. If path_part = TopPart, only the first path_depth structure id/element
offset pairs in each path will be returned. If path_part = BottomPart, only the last path_depth structure
id/element offset pairs in each path will be returned. Only unique paths will be returned (i.e., there will be
no duplicates in the list of returned paths).

For instance, specifying path_depth = 0 and path_part = TopPart would cause all paths leading to s_id to
be returned. Specifying path_depth = 1 and path_part = TopPart would cause all the structures at the top
of each structure network containing s_id to be returned. Specifying path_depth = 1 and path_part =
BottomPart would allow you to determine whether or not s_id is referenced. Specifying path_depth = 2
and path_part = BottomPart would allow you to determine the number of immediate ancestors for s_id as
well as returning their resource IDs.

PEX Version 5.0P, 14-September-1990



-- --

-94-

7.2.5. Get Descendants

Name:
PEXGetDescendants

Request:
s_id : STRUCTURE_ID
path_part : {TopPart, BottomPart}
path_depth : CARD32

Reply:
paths : LISTofLISTofELEMENT_REF

Errors:
Structure, Value

Description:

This request returns unique paths in the structure hierarchy from s_id to leaf nodes in the hierarchy. Paths
are returned as a list of structure id/element offset pairs that are in the order from s_id down to the leaf
nodes. For full paths, the first entry in each path would have the structure ID equal to s_id and the offset
equal to the offset of the element that references a descendant in the hierarchy, and the last entry would
have the structure ID of a leaf node in the structure hierarchy and an offset of zero. The path_depth
indicates the maximum length (number of structure id/element offset pairs) of each path, except that
path_depth = 0 means that the full path is to be returned. The path_part indicates whether the head or the
tail of each path is to be returned. If path_part = TopPart, only the first path_depth structure id/element
offset pairs in each path will be returned. If path_part = BottomPart, only the last path_depth structure
id/element offset pairs in each path will be returned. Only unique paths will be returned (i.e., there will be
no duplicates in the list of returned paths).

For instance, specifying path_depth = 0 and path_part = TopPart would cause all paths leading from s_id
to leaf nodes to be returned. Specifying path_depth = 1 and path_part = TopPart would cause all the direct
references to other structures in s_id to be returned. Specifying path_depth = 1 and path_part =
BottomPart could be used to determine the leaf nodes for the structure hierarchy rooted at s_id.

PEX Version 5.0P, 14-September-1990



-- --

-95-

7.2.6. Fetch Elements

Name:
PEXFetchElements

Request:
fp_format : FLOAT_FORMAT
s_id : STRUCTURE_ID
range : ELEMENT_RANGE

Reply:
elements : LISTofOUTPUT_CMD

Errors:
Structure, FloatingPointFormat, Value

Description:

This request returns a range of structure elements in the structure specified by s_id. The offsets that define
the range of elements to be fetched are computed using the positions in range in the following fashion. If
whence is Beginning, the computed offset is just the value specified by offset. If whence is Current, the
offset is computed by adding offset to s_id’s element pointer. If whence is End, the offset is computed by
adding offset to the number of elements in the structure. Offset can be a negative number.

If either computed offset is less than zero, it will be set to zero before the fetch occurs. If either computed
offset is greater than the number of elements in the source structure, it will be set to the offset of the last
structure element in the source structure. The element pointer attribute of s_id is not affected by the fetch
operation. The data for each structure element will be returned in the same format as described Section 3 -
Output Commands section.

Floating point values in elements will be returned in the floating point format specified in fp_format (if it is
supported by the PEX implementation). |

No information will be returned for inquiries on element offset zero.

PEX Version 5.0P, 14-September-1990



-- --

-96-

7.3. Structure Resource Attribute Modification

This section contains requests that can be used to modify structure resource attributes.

7.3.1. Set Editing Mode

Name:
PEXSetEditingMode

Request:
s_id : STRUCTURE_ID
mode : EDIT_MODE

Errors:
Structure, Value

Description:

This request modifies s_id’s editing mode attribute. The editing mode attribute specifies how editing
operations will affect the structure. If the editing mode is set to StructureInsert, subsequent requests to
create structure elements will cause elements to be inserted into the structure. Elements will be inserted
into the structure after the structure element specified by the element pointer. The element pointer will
then be incremented by the number of elements inserted. If the mode is StructureReplace, output requests
used to create structure elements will cause structure elements to replace elements starting at the location
specified by the element pointer.

7.3.2. Set Element Pointer

Name:
PEXSetElementPointer

Request:
s_id : STRUCTURE_ID
position : ELEMENT_POS

Errors:
Structure, Value

Description:

This request sets the element pointer attribute of the structure specified by s_id. The element pointer
attribute of the structure will be set to the position specified by position, which contains a whence and offset
pair. If whence is Beginning, the element pointer is set to the specified offset. If whence is Current, the
new element pointer value is computed by adding offset to the current value of the element pointer. If
whence is End, the new element pointer value is computed by adding the specified offset to the offset of the
last element in the structure. Offset can be a negative number.

If the resultant value of the element pointer is less than zero, the element pointer is set to zero. If the
resultant value of the element pointer is greater than the number of elements in the structure, then the
element pointer is set to the offset of the last element in the structure.

PEX Version 5.0P, 14-September-1990



-- --

-97-

7.3.3. Set Element Pointer At Label

Name:
PEXSetElementPointerAtLabel

Request:
s_id : STRUCTURE_ID
label : INT32
offset : INT32

Errors:
Structure, Label

Description:

This request sets the element pointer attribute of the structure specified by s_id. A search is conducted for
the next occurrence of a "label" structure element containing label. The search for the label starts at the
current element pointer plus one, and proceeds in the forward direction. If a "label" structure element
containing label is found, the element pointer for the structure is set to the offset of the located label plus
offset.

If the resultant value of the element pointer is less than zero, the element pointer is set to zero. If the
resultant value of the element pointer is greater than the number of elements in the structure, then the
element pointer is set to the offset of the last element in the structure. This is a non-descending search (i.e.,
the search does not include any structures referenced by "execute structure" elements). If no occurrence of
the specified label is found, an error is generated and the structure’s element pointer is left unchanged.

PEX Version 5.0P, 14-September-1990



-- --

-98-

7.3.4. Element Search

Name:
PEXElementSearch

Request:
s_id : STRUCTURE_ID
position : ELEMENT_POS
direction : {Forward, Backward}
incl : LISTofELEMENT_TYPE
excl : LISTofELEMENT_TYPE

Reply:
status : {Found, NotFound}
found_offset : CARD32

Errors:
Structure, Value

Description:

This request conducts a search for the first occurrence of the specified element type in the structure
specified by s_id. The offset at which to begin searching is computed using the whence and offset found in
position. If whence is Beginning, the search will begin at the element specified by offset. If whence is
Current, the specified offset is added to the current value of s_id’s element pointer to determine the element
at which to begin the search. If whence is End, the element at which to begin the search is computed by
adding the specified offset to the offset of the last element in the structure. Offset can be a negative
number.

If the computed offset is less than zero, the search will begin at the position preceding the first element in
the structure. If the computed offset is greater than the number of elements in the structure, then the search
will begin at the last element in the structure. The search always includes the starting element.

An element will be selected if its element type is not contained in excl and its element type is included in
incl. An element type of All causes all element types to match. If a structure element type is in both the
inclusion and exclusion sets, it will be excluded.

The search terminates if a match is found or if the limits of the structure are reached. The search
progresses from the start point and proceeds either forward in the structure or backward, depending on
direction. This is a non-descending search (i.e., the search does not include any structures referenced by
"execute structure" elements). If the search succeeds in finding a match, a status of Found is returned, and
the offset of the matching element is returned in found_offset. If the search is unsuccessful, a status of
NotFound is returned, and a value of zero is returned in found_offset.

The element pointer attribute of s_id is not modified as a result of this request.

PEX Version 5.0P, 14-September-1990



-- --

-99-

7.4. Structure Editing

This section contains requests that can be used to modify structure resources.

7.4.1. Store Elements

Name:
PEXStoreElements

Request:
fp_format : FLOAT_FORMAT
s_id : STRUCTURE_ID
elements : LISTofOUTPUT_CMD

Errors:
Structure, FloatingPointFormat, OutputCommand

Description:

This request causes elements to be stored in the structure whose resource ID is specified by s_id. If the
editing_mode attribute of the structure is set to StructureInsert, each entry in elements is used to create a
structure element in the structure after the element specified by the structure’s element_ptr attribute.
Output commands in the request are processed until one is found to be in error, or until the entire list has
been processed. The erroneous output command and all others following it in the request are ignored (they
will not be added to the structure), and an OutputCommand error is returned to the client. The element
pointer is incremented by one for each such insertion. Therefore, at the conclusion of the request, the
element pointer is left pointing at the last inserted element.

If the editing_mode attribute is set to StructureReplace, a range of elements is first deleted from the
structure as if PEXDeleteElements were called with a position1 whence/offset of {Current, 0} and a
position2 whence/offset of {Current, n - 1} where n is the number of elements to be deleted. (If element |
zero is included as part of the range to be deleted, all elements in the range except for element zero will be
deleted.) If there are fewer elements between the structure’s element pointer and the end of the structure
than there are output commands in elements, then only the elements between the element pointer and the
end of the structure will be deleted. The element pointer will be left pointing at the element preceding the
deleted range. After the deletion, the output commands specified in elements are inserted at the element
pointer position as described above.

Floating point values in elements will be in the floating point format specified in fp_format. The formats
for the various types of output commands can be found in the "Output Commands" section.

PEX Version 5.0P, 14-September-1990



-- --

-100-

7.4.2. Delete Elements

Name:
PEXDeleteElements

Request:
s_id : STRUCTURE_ID
range : ELEMENT_RANGE

Errors:
Structure, Value

Description:

This request deletes elements in range from the structure whose ID is specified in s_id. The range of
elements to be deleted is computed using the whence and offset values of position1 and position2.

The offsets that define the range of elements to be deleted are each computed using the positions in range
in the following fashion. If whence is Beginning, the computed offset is just the value specified by offset.
If whence is Current, the offset is computed by adding offset to s_id’s element pointer. If whence is End,
the offset is computed by adding offset to the number of elements in the structure. Offset can be a negative
number.

If either computed offset is less than zero, it will be set to zero before the deletion occurs. If either
computed offset is greater than the number of elements in the structure, it will be set to the offset of the last
structure element. It is not necessary for the first offset to be less than the second. The deletion is
inclusive, meaning that the elements at the boundary of the deletion range are also deleted. It does not
matter which of the two offsets determines the lower end of the range to be deleted and which determines
the higher end of the range. Deleting element zero is effectively a noop. After the deletion operation, the
structure’s element pointer will be set to the element preceding the range of deleted elements.

PEX Version 5.0P, 14-September-1990



-- --

-101-

7.4.3. Delete Elements To Label

Name:
PEXDeleteElementsToLabel

Request:
s_id : STRUCTURE_ID
position : ELEMENT_POS
label : INT32

Errors:
Structure, Label, Value

Description:

This request deletes all elements between a computed offset and a specified label in the structure whose ID
is specified in s_id. The offset is computed using position in the following fashion. If whence is
Beginning, the computed offset is just the value specified by offset. If whence is Current, the offset is
computed by adding offset to s_id’s element pointer. If whence is End, the offset is computed by adding
offset to the number of elements in the structure. Offset can be a negative number.

If the computed offset is less than zero, it will be set to zero before the deletion occurs. If the computed
offset is greater than the number of elements in the structure, it will be set to the offset of the last structure
element. Elements are deleted starting at the element immediately after the computed offset up to the next
occurrence of the label. The label itself is not deleted. The structure’s element pointer is set to point at the
element immediately preceding the range of deleted elements. If the specified label is not found, no
deletion occurs and the structure’s element pointer is left unchanged.

7.4.4. Delete Elements Between Labels

Name:
PEXDeleteElementsBetweenLabels

Request:
s_id : STRUCTURE_ID
label1 : INT32
label2 : INT32

Errors:
Structure, Label

Description:

This request deletes all elements between label1 and label2 in the structure whose ID is specified in s_id.
A search for label1 is first performed starting at the element whose offset is specified by the structure’s
element pointer. A search for label2 is then performed, starting at the element after label1. The range of
elements between the two labels is then deleted. The two label elements themselves are not deleted. The
structure’s element pointer is set to point at the element immediately preceding the range of deleted
elements (the element containing label1).

If either of the two specified labels is not found between starting point of the search and the end of the
structure, no deletion occurs and the structure’s element pointer is left unchanged.

PEX Version 5.0P, 14-September-1990



-- --

-102-

7.4.5. Copy Elements

Name:
PEXCopyElements

Request:
src_s_id : STRUCTURE_ID
src_range : ELEMENT_RANGE
dest_s_id : STRUCTURE_ID
dest_position : ELEMENT_POS

Errors:
Structure, Value

Description:

This request copies elements in src_range from the structure specified in src_s_id to the dest_position in |
the structure specified in dest_s_id. The range of elements to be copied is computed using the whence and
offset values of position1 and position2 in src_range.

The offsets that define the range of elements to be copied are each computed using the positions in
src_range in the following fashion. If whence is Beginning, the computed offset is just the value specified
by offset. If whence is Current, the offset is computed by adding offset to src_s_id’s element pointer. If
whence is End, the offset is computed by adding offset to the number of elements in the structure. Offset
can be a negative number.

If either computed offset is less than zero, it will be set to zero before the copy occurs. If either computed
offset is greater than the number of elements in the source structure, it will be set to the offset of the last
structure element in the source structure. It does not matter which of the two offsets determines the lower |
end of the range to be copied and which determines the higher end of the range (i.e., the element order will |
not be reversed if offset1 is greater than offset2).

The position to which the elements will be copied is computed using dest_position in the following fashion.
If whence is Beginning, the computed destination offset is just the value specified by offset. If whence is
Current, the offset is computed by adding offset to dest_s_id’s element pointer. If whence is End, the offset
is computed by adding offset to the number of elements in the destination structure. Offset can be a
negative number. *

It is permissible for src_s_id and dest_s_id to be the same. If this is the case, the copy operation performs
as if the indicated range is copied to a temporary location, and then inserted relative to the destination
position.

After the copy operation, the destination structure’s element pointer is updated to point at the last element
inserted in the destination structure. The editing mode attribute of dest_s_id is ignored during this request; |
copied elements are always inserted into the destination structure, never used to replace existing structure
elements.

PEX Version 5.0P, 14-September-1990



-- --

-103-

7.4.6. Change Structure References

Name:
PEXChangeStructureReferences

Request:
old_s_id : STRUCTURE_ID
new_s_id : STRUCTURE_ID

Errors:
Structure

Description:

This request changes any "execute structure" elements in the server that reference the structure specified by
old_s_id into "execute structure" elements that reference the structure specified by new_s_id.

Any references to the structure new_s_id that existed before this request are not affected. On all PHIGS
workstation resources where new_s_id is already posted, it remains posted and old_s_id, if posted there, is
unposted. On all PHIGS workstation resources where new_s_id is not already posted and old_s_id is
posted, new_s_id is posted with the same priority as old_s_id and old_s_id is unposted. If there were
references to the structure resource specified by old_s_id and the structure resource specified by new_s_id
does not exist, an error is returned and no action is taken.

PEX Version 5.0P, 14-September-1990



-- --

-104-

8. Name Sets

A name set is a PEX resource that is used to filter output commands during rendering, picking, and searching
operations. Name sets typically make fairly small demand on server memory resources, but they are of variable size |
so this can vary depending on their contents.

8.1. Name Set Resource Management

The name set is an X11 resource and carries all of the responsibilities and access rights of X11 resources. These
requests manage the creation, freeing, and copying of name set resources.

8.1.1. Create Name Set

Name:
PEXCreateNameSet

Request:
ns_id : NAME_SET_ID

Errors:
IDChoice, Alloc

Description:

This request creates a name set resource for the specified ns_id. The name set is initialized to an empty list
when the resource is created.

8.1.2. Copy Name Set

Name:
PEXCopyNameSet

Request:
src_ns_id : NAME_SET_ID
dest_ns_id : NAME_SET_ID

Errors:
NameSet

Description:

This request copies the source name set src_ns_id to a destination name set dest_ns_id after first emptying
the contents of dest_ns_id. The dest_ns_id must already exist as a valid resource.

PEX Version 5.0P, 14-September-1990



-- --

-105-

8.1.3. Free Name Set

Name:
PEXFreeNameSet

Request:
ns_id : NAME_SET_ID

Errors:
NameSet

Description:

This request deletes the association between the resource ID and the name set. The name set storage will
be freed when no other resource references it.

PEX Version 5.0P, 14-September-1990



-- --

-106-

8.2. Name Set Inquiry

These requests inquire the contents of name set resources. |

8.2.1. Get Name Set

Name:
PEXGetNameSet

Request:
ns_id : NAME_SET_ID

Reply:
names : LISTofNAME

Errors:
NameSet

Description:

This request will return the contents of the name set specified by ns_id.

8.3. Name Set Modification

These requests can be used to modify the contents of name set resources.

8.3.1. Change Name Set

Name:
PEXChangeNameSet

Request:
ns_id : NAME_SET_ID
action : {Replace, Add, Remove}
names : LISTofNAME

Errors:
NameSet, Value

Description:

This request changes the contents of a name set resource. If action is Add, the specified list of names is
added to the name set. If action is Remove, the specified list of names is removed from the name set. If
action is Replace, all the names in the name set are removed, then the specified list of names is added to the
name set.

PEX Version 5.0P, 14-September-1990



-- --

-107-

9. Search Contexts

A search context is a PEX resource that allows clients to perform searching operations on structure networks. This
section describes the operations that can be performed on search context resources and the operations that can be
performed using search context resources. PEX currently provides no support for searching of client-side structure
networks.

Some of the requests in this section affect attributes of a search context. The item_mask and item_list parameters
specify which components are to be affected. Each bit in the item_mask indicates whether or not the corresponding
attribute is affected. In the cases where search context attributes are being set or queried, there is a corresponding
entry in the item_list for each set bit in item_mask. It is therefore possible to affect one or many search context
attributes with a single request.

Two of the search context attributes contain name set resource IDs. If a name set is created, bound to a search |
context, and then freed, the contents of the name set will remain, since it is still being referenced by the search
context. However, when a search context is queried, the value AlreadyFreed will be returned for the name set ID,
since it no longer has a valid resource ID by which it can be referenced.

When a text primitive or annotation text primitive is encountered during a search operation, only the origin of the |
text string is used to determine if the search was successful.† |

The search context components, in order, are listed in the following table.

Attribute Name Data Type Default Value
search_pos COORD_3D (0.0,0.0,0.0)
search_dist FLOAT 0.0
search_ceiling CARD16 0
model_clip_flag BOOLEAN False |
start_path LISTofELEMENT_REF Null
normal_list LISTofNAME_SET_PAIR Null
inverted_list LISTofNAME_SET_PAIR Null

The attributes of the search context resource are defined as follows:

search_pos
This attribute specifies the search reference position in world coordinates.

search_dist
This attribute specifies a distance from the search reference position in world coordinates. A successful
search occurs only when an output primitive element is found that satisfies the search filter criteria and is
within the specified distance from the search reference point. In order to satisfy the search criteria if
search_dist is less than or equal to zero, the primitive must intersect the search_pos.

search_ceiling
This attribute defines the ceiling of the search operation. The search ceiling is an index into the list contained
in start_path. Index one refers to the first path element in the list. Searching stops when the end of the |
structure specified by search_ceiling is reached. If the ceiling is one, the search operates without a ceiling. |

† The criteria of closeness to the origin matches PHIGS semantics for incremental spatial search on annotation text. How-
ever, PHIGS specifies that the enclosing rectangle of text primitives be used when searching. The traversal-time values of
the geometric text attributes, together with text font 1, text precision Stroke, character expansion factor 1 and character
spacing 0, determine the spatial extent of the enclosing rectangle. At this time, PEX does not follow the PHIGS semantics
for searching on text primitives. In order to release the current PEX documents in a timely manner, this issue has been de-
ferred until a future version of PEX.

PEX Version 5.0P, 14-September-1990



-- --

-108-

model_clip_flag
This attribute specifies whether modeling clipping must be performed during the search operation. If True,
modeling clipping is performed using the modeling clipping attributes as they are encountered during the
traversal. If False, no modeling clipping is performed and modeling clipping attributes that are encountered
during the traversal are effectively ignored.

start_path
This attribute defines the structure network path that is to be used as the starting point for the search.
Searching begins at the element following the one indicated by the start path.

normal_list
This attribute contains the list of name set resource ID pairs to be used as filters in the search operation. If the
normal_list is Null, all name sets are considered accepted by the normal filter list.

inverted_list
This attribute contains the list of name set resource ID pairs to be inverted and used as filters in the search
operation. If the inverted_list is Null, all name sets are considered accepted by the inverted filter list.

PEX Version 5.0P, 14-September-1990



-- --

-109-

9.1. Search Context Resource Management

The search context is an X11 resource and carries all of the responsibilities and access rights of X11 resources.
These requests manage the creation, freeing, and copying of search contexts.

9.1.1. Create Search Context

Name:
PEXCreateSearchContext

Request:
fp_format : FLOAT_FORMAT
sc_id : SEARCH_CONTEXT_ID
item_mask : BITMASK
item_list : LISTofVALUE

Errors:
IDChoice, Value, FloatingPointFormat, Alloc, Path, NameSet

Description:

This request creates a search context resource for the specified sc_id. The item_mask defines those search
context attributes that are to be explicitly set at the time the resource is created. The item_list contains the
corresponding list of values used to modify the newly-created search context. Floating point values in
item_list will be in the floating point format specified in fp_format. |

9.1.2. Copy Search Context

Name:
PEXCopySearchContext

Request:
src_sc_id : SEARCH_CONTEXT_ID
dest_sc_id : SEARCH_CONTEXT_ID
item_mask : BITMASK

Errors:
SearchContext, Value

Description:

This request copies the source search context src_sc_id to a destination search context dest_sc_id. The
dest_sc_id must already exist as a valid resource. The item_mask indicates which values in the search
context will be copied.

PEX Version 5.0P, 14-September-1990



-- --

-110-

9.1.3. Free Search Context

Name:
PEXFreeSearchContext

Request:
sc_id : SEARCH_CONTEXT_ID

Errors:
SearchContext

Description:

This request deletes the specified search context resource and frees the storage associated with it.

PEX Version 5.0P, 14-September-1990



-- --

-111-

9.2. Search Context Inquiry

The requests in this section can be used to inquire search context attributes.

9.2.1. Get Search Context

Name:
PEXGetSearchContext

Request:
fp_format : FLOAT_FORMAT
sc_id : SEARCH_CONTEXT_ID
item_mask : BITMASK

Reply:
item_list : LISTofVALUE

Errors:
SearchContext, FloatingPointFormat, Value

Description:

This request will return components of the search context specified by sc_id. The item_mask specifies
which components are to be inquired and returned. The specified attributes of the search context will be
returned in item_list. Floating point values in item_list will be returned in the floating point format |
specified in fp_format.

9.3. Search Context Modification

The requests in this section can be used to modify attributes of search context resources.

9.3.1. Change Search Context

Name:
PEXChangeSearchContext

Request:
fp_format : FLOAT_FORMAT
sc_id : SEARCH_CONTEXT_ID
item_mask : BITMASK
item_list : LISTofVALUE

Errors:
SearchContext, Value, FloatingPointFormat, Path, NameSet

Description:

This request changes components of a search context. The item_mask and item_list specify which
components are to be changed. Each bit in the item_mask indicates whether or not there is a corresponding
entry in the item_list. It is therefore possible to modify one or many search context attributes with a
PEXChangeSearchContext request. Floating point values in item_list will be in the floating point format |
specified in fp_format.

PEX Version 5.0P, 14-September-1990



-- --

-112-

9.4. Structure Network Searching

This section describes requests that use search context resources to perform structure network searching operations.

9.4.1. Search Network

Name:
PEXSearchNetwork

Request:
sc_id : SEARCH_CONTEXT_ID

Reply:
found_path : LISTofELEMENT_REF

Errors:
SearchContext, Path

Description:

This request causes a spatial search in world coordinates to be performed on a structure network. The
parameters of the searching operation are found in the search context sc_id. The search begins at the
element following the one indicated by the start_path attribute of sc_id. The search is terminated once the
end of the structure indicated by search_ceiling has been reached. The first element that meets the search
criteria is returned in found_path. If no element is found, found_path will be null. After the search has
completed, the start_path attribute of sc_id will be set to the value that is returned in found_path.

For a structure element to be considered a candidate for the search, the current name set has to be accepted
by all the name set pairs in the search context’s normal_list, and has to be rejected by all of the name set
pairs in the inverted_list. If the normal_list is Null, all possible name sets are accepted by the normal list.
If the inverted_list is Null, all possible name sets are accepted by the inverted list. Therefore the default
case is that all output primitives are considered.

PEX Version 5.0P, 14-September-1990



-- --

-113-

10. PHIGSWorkstations

A PHIGS workstation is a PEX resource that combines other resources into a single entity that behaves in a manner
similar to the PHIGS abstraction of a "workstation". The PHIGS workstation has built into it all of the capabilities
of the renderer resource described earlier. A PHIGS workstation, with its lookup tables and name sets, effectively
contains an instance of a renderer, but it also contains functionality above and beyond that found in a renderer
resource.

This section describes the operations that can be performed on PHIGS workstation resources and the operations that
can be performed using PHIGS workstation resources. In addition to the attributes listed below, the PHIGS
workstation resource also contains an implementation-dependent number of pick device descriptors that support
picking operations. These can be set and queried with requests found in the next section, "Picking".

There are several differences between PHIGS workstations and renderers. Due to the desire to match PHIGS
semantics for dealing with views, a PHIGS workstation resource has a built-in view table that can only be accessed
through the defined PHIGS workstation requests. However, this view table is functionally the same as that used by
a renderer, and information about it may be obtained by using the lookup table requests to obtain information about
tables of type View. A PHIGS workstation resource that has its associated drawable destroyed will be freed
implicitly.

Lookup table and name set resources can be bound to a PHIGS workstation resource and then freed. The contents
of these resources will remain, since they are still being referenced by the PHIGS workstation. However, when a
PHIGS workstation’s attributes are queried, the value AlreadyFreed will be returned for those resources that have
been freed and thus no longer have a valid resource ID by which they can be referenced.

PEX Version 5.0P, 14-September-1990



-- --

-114-

10.1. PHIGSWorkstation Resource Management

The PHIGS workstation is an X11 resource and carries all of the responsibilities and access rights of X11 resources.
These requests manage the creation, freeing, and copying of PHIGS workstation resources.

10.1.1. Create PHIGSWorkstation

Name:
PEXCreatePhigsWKS

Request:
wks_id : PHIGS_WKS_ID
drawable_id : DRAWABLE_ID
marker_bundle : LOOKUP_TABLE_ID
text_bundle : LOOKUP_TABLE_ID
line_bundle : LOOKUP_TABLE_ID
interior_bundle : LOOKUP_TABLE_ID
edge_bundle : LOOKUP_TABLE_ID
color_table : LOOKUP_TABLE_ID
depth_cue_table : LOOKUP_TABLE_ID
light_table : LOOKUP_TABLE_ID
color_approx_table : LOOKUP_TABLE_ID
pattern_table : LOOKUP_TABLE_ID
text_font_table : LOOKUP_TABLE_ID
highlight_inclusion : NAME_SET_ID
highlight_exclusion : NAME_SET_ID
invisibility_inclusion : NAME_SET_ID
invisibility_exclusion : NAME_SET_ID
buffer_mode : BUFFER_MODE

Errors:
IDChoice, Drawable, Match, LookupTable, NameSet, Alloc, Value

Description:

This request creates a PHIGS workstation resource for the specified wks_id. The window or pixmap
specified by drawable_id is associated with the newly-created PHIGS workstation resource. The named |
tables and name sets are also bound to the PHIGS workstation resource for use during rendering. A view
table that supports current and requested view table entries is allocated for the PHIGS workstation
automatically at creation time. The requests PEXSetViewRep and PEXGetViewRep can be used to
modify and query the PHIGS workstation view table. The buffer_mode attribute is used to specify whether
the workstation will operate in single-buffered or double-buffered mode. If double-buffered, an additional
image buffer will be created for the drawable in an implementation-dependent fashion in order to support
double-buffering. If drawable_id is a pixmap, then no double buffering will be performed.

PEX Version 5.0P, 14-September-1990



-- --

-115-

10.1.2. Free PHIGSWorkstation

Name:
PEXFreePhigsWKS

Request:
wks_id : PHIGS_WKS_ID

Errors:
PhigsWKS

Description:

This request deletes the PHIGS workstation resource and any image buffers that were created by the PEX
extension in order to support double-buffering. The storage associated with the resource is then freed as
well.

PEX Version 5.0P, 14-September-1990



-- --

-116-

10.2. PHIGSWorkstation Inquiry

This section defines requests that can be used to get information about a PHIGS workstation resource.

10.2.1. Get PHIGSWorkstation Info

Name:
PEXGetWKSInfo

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
item_mask : WKS_BITMASK

Reply:
item_list : LISTofVALUE

Errors:
PhigsWKS, FloatingPointFormat, Value

Description:

This request returns attributes of the PHIGS workstation resource indicated by wks_id. Floating point
values will be returned in the floating point format specified by fp_format. The parameter item_mask |
indicates which attributes are to be returned. For each bit that is set in item_mask, a corresponding value is
returned in item_list.

In the table below, the abbreviation "create wks req." indicates that the parameter is set by the
PEXCreatePhigsWKS request. The abbreviation "imp. dep." means that the default value is
implementation-dependent. The attributes that may be returned, in order, are:

Attribute Name Data Type Default
display_update DISPLAY_UPDATE VisualizeEach
visual_state VISUAL_STATE Correct
display_surface DISPLAY_STATE Empty
view_update UPDATE_STATE NotPending
defined_views LISTofTABLE_INDEX View 0 defined
wks_update UPDATE_STATE NotPending
req_NPC_subvolume NPC_SUBVOLUME (0.0,0.0,0.0),(1.0,1.0,1.0)
cur_NPC_subvolume NPC_SUBVOLUME (0.0,0.0,0.0),(1.0,1.0,1.0)
req_wks_viewpt VIEWPORT {imp. dep., imp. dep., True}
cur_wks_viewpt VIEWPORT {imp. dep., imp. dep., True}
HLHSR_update UPDATE_STATE NotPending
req_HLHSR_mode HLHSR_MODE 1
cur_HLHSR_mode HLHSR_MODE 1
drawable_id DRAWABLE_ID create wks req.
marker_bundle LOOKUP_TABLE_ID create wks req.
text_bundle LOOKUP_TABLE_ID create wks req.
line_bundle LOOKUP_TABLE_ID create wks req.
interior_bundle LOOKUP_TABLE_ID create wks req.
edge_bundle LOOKUP_TABLE_ID create wks req.
color_table LOOKUP_TABLE_ID create wks req.
depth_cue_table LOOKUP_TABLE_ID create wks req.
light_table LOOKUP_TABLE_ID create wks req.
color_approx_table LOOKUP_TABLE_ID create wks req.

PEX Version 5.0P, 14-September-1990



-- --

-117-

pattern_table LOOKUP_TABLE_ID create wks req.
text_font_table LOOKUP_TABLE_ID create wks req.
highlight_inclusion NAME_SET_ID create wks req.
highlight_exclusion NAME_SET_ID create wks req.
invisibility_inclusion NAME_SET_ID create wks req.
invisibility_exclusion NAME_SET_ID create wks req.
posted_structs LISTofSTRUCTURE_INFO Null
num_priorities CARD32 imp. dep.
buffer_update UPDATE_STATE NotPending |
req_buffer_mode BUFFER_MODE create wks req. |
cur_buffer_mode BUFFER_MODE create wks req. |

display_update
Returns the PHIGS workstation’s current display update mode. This mode specifies how the PHIGS
workstation attempts to visualize changes, and can be set with the PEXSetDisplayUpdateMode
request.

visual_state
Returns the PHIGS workstation’s current visual state. The visual state will be Correct if there are no
deferred actions and no changes have been simulated on the display surface. The visual state will be
Deferred if there are deferred actions, or if there are deferred actions and some changes have been
simulated on the display surface. The visual state will be Simulated if there are no deferred actions,
but some changes have been simulated on the display surface.

display_surface
Returns the current status of the PHIGS workstation’s display surface. The display surface will be
Empty if nothing has been rendered on the drawable, NotEmpty otherwise.

view_update
Returns Pending or NotPending, depending on whether there are view modification requests that
have yet to be made current.

defined_views
Returns the list of view table indices that are defined in the PHIGS workstation’s current view table.
The list of defined view indices will be returned in the order of view transformation input priority.

wks_update
Returns Pending or NotPending, depending on whether there are workstation transformation requests
that have yet to be made current.

req_NPC_subvolume
Returns the value for the PHIGS workstation’s NPC subvolume specification that has been requested
but has not yet been made current.

cur_NPC_subvolume
Returns the current value for the PHIGS workstation’s NPC subvolume specification.

req_wks_viewpt
Returns the value for the PHIGS workstation’s viewport specification that has been requested but has
not yet been made current.

cur_wks_viewpt
Returns the current value for the PHIGS workstation’s viewport specification.

HLHSR_update
Returns Pending or NotPending, depending on whether there are HLHSR mode requests that have
yet to be made current.

PEX Version 5.0P, 14-September-1990



-- --

-118-

req_HLHSR_mode
Returns the value for the PHIGS workstation’s HLHSR mode that has been requested but has not yet
been made current.

cur_HLHSR_mode
Returns the current value for the PHIGS workstation’s HLHSR mode.

drawable_id
Returns the resource ID of the drawable that is being used as the display surface.

marker_bundle
Returns the resource ID of the PHIGS workstation’s marker bundle table.

text_bundle
Returns the resource ID of the PHIGS workstation’s text bundle table.

line_bundle
Returns the resource ID of the PHIGS workstation’s line bundle table.

interior_bundle
Returns the resource ID of the PHIGS workstation’s interior bundle table.

edge_bundle
Returns the resource ID of the PHIGS workstation’s edge bundle table.

color_table
Returns the resource ID of the color lookup table that will be used by the PHIGS workstation to
dereference indexed color values.

depth_cue_table
Returns the resource ID of the PHIGS workstation’s depth-cue table.

light_table
Returns the resource ID of the PHIGS workstation’s light table.

color_approx_table
Returns the resource ID of the color approximation table that will be used by the PHIGS workstation.

pattern_table
Returns the resource ID of the PHIGS workstation’s pattern table.

text_font_table
Returns the resource ID of the PHIGS workstation’s text font table.

highlight_inclusion
Returns the resource ID of the PHIGS workstation’s highlight inclusion name set.

highlight_exclusion
Returns the resource ID of the PHIGS workstation’s highlight exclusion name set.

invisibility_inclusion
Returns the resource ID of the PHIGS workstation’s invisibility inclusion name set.

invisibility_exclusion
Returns the resource ID of the PHIGS workstation’s invisibility exclusion name set.

posted_structs
Returns the resource ID and associated priority of each of the structures in the PHIGS workstation’s
posted structure list. The list will be returned in structure priority order.

PEX Version 5.0P, 14-September-1990



-- --

-119-

num_priorities
Returns the number of display priorities that are supported. A value of zero indicates that a
continuous range of priorities is supported.

buffer_update |
Returns Pending or NotPending, depending on whether there are buffer mode requests that have yet |
to be made current. |

req_buffer_mode
Returns the value for the PHIGS workstation’s buffer mode that has been requested but has not yet
been made current.

cur_buffer_mode
Returns the value for the PHIGS workstation’s buffer mode, either Single or Double. If the drawable
associated with the PHIGS workstation resource is a pixmap, then no double-buffering will be
performed.

PEX Version 5.0P, 14-September-1990



-- --

-120-

10.2.2. Get Dynamics

Name:
PEXGetDynamics

Request:
drawable_id : DRAWABLE_ID

Reply:
view_rep : DYNAMIC_TYPE
marker_bundle : DYNAMIC_TYPE
text_bundle : DYNAMIC_TYPE
line_bundle : DYNAMIC_TYPE
interior_bundle : DYNAMIC_TYPE
edge_bundle : DYNAMIC_TYPE
color_table : DYNAMIC_TYPE
pattern_table : DYNAMIC_TYPE
wks_transform : DYNAMIC_TYPE
highlight_filter : DYNAMIC_TYPE
invisibility_filter : DYNAMIC_TYPE
HLHSR_mode : DYNAMIC_TYPE
structure_modify : DYNAMIC_TYPE
post_structure : DYNAMIC_TYPE
unpost_structure : DYNAMIC_TYPE
delete_structure : DYNAMIC_TYPE
reference_modify : DYNAMIC_TYPE
buffer_modify : DYNAMIC_TYPE |
light_table : DYNAMIC_TYPE |
depth_cue_table : DYNAMIC_TYPE |
color_approx_table : DYNAMIC_TYPE

Errors:
Drawable

Description:

This request returns information about the dynamics that are supported by PHIGS workstations associated
with drawables of the type specified by drawable_id. The list of dynamics, in order, is as follows:

PEX Version 5.0P, 14-September-1990



-- --

-121-

Attribute Name Description
view_rep Changes to view table
marker_bundle Changes to marker bundle
text_bundle Changes to text bundle
line_bundle Changes to line bundle
interior_bundle Changes to interior bundle
edge_bundle Changes to edge bundle
color_table Changes to color table
pattern_table Changes to pattern table
wks_transform Changes to workstation transformations
highlight_filter Changes to highlight name set
invisibility_filter Changes to invisibility name set
HLHSR_mode Changes to HLHSR mode
structure_modify Structure modifications (edits)
post_structure Additions to posted structure list
unpost_structure Deletions from posted structure list
delete_structure Deletion of structure resources
reference_modify Structure reference modifications
buffer_modify Changes to buffering mode
light_table Changes to light table |
depth_cue_table Changes to depth cue table |
color_approx_table Changes to color approximation table |

The value returned for each of the items in the list above can be one of IMM, IRG, or CBS, where IMM
means that the specified action can be performed and the correct image displayed immediately, IRG means
that the specified action requires a regeneration of the image, and CBS means that the specified action can
be simulated immediately if the PHIGS workstation’s display_update mode is set to SimulateSome.

PEX Version 5.0P, 14-September-1990



-- --

-122-

10.2.3. Get View Representation *

Name:
PEXGetViewRep

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
index : TABLE_INDEX

Reply:
view_update : {Pending, NotPending}
requested : VIEW_REP
current : VIEW_REP

Errors:
PhigsWKS, FloatingPointFormat, Value

Description:

This request returns the value of the view update state and the specified entries in the requested and current
view tables in the PHIGS workstation specified by wks_id. The view_update will be Pending if a view
change has been requested but not established. If the specified entry is not defined, an error will be
generated and the contents of the reply parameters will be undefined. Floating point values will be returned |
in the floating point format specified by fp_format.

PEX Version 5.0P, 14-September-1990



-- --

-123-

10.3. PHIGSWorkstation Manipulation

This section contains requests that modify PHIGS workstation resources.

10.3.1. Redraw All Structures

Name:
PEXRedrawAllStructures

Request:
wks_id : PHIGS_WKS_ID

Errors:
PhigsWKS

Description:

This request redraws all the posted structures contained in the PHIGS workstation resource specified by
wks_id. First, if the PHIGS workstation’s display_surface attribute is NotEmpty, its drawable is cleared to |
the color stored in entry zero of its color lookup table. Then, if any of its view_update, wks_update, |
HLHSR_update, or buffer_update attributes is set to Pending, the requested values are made the current
values and the attribute is set to NotPending. After this, all the posted structures are traversed and rendered
(in priority order). Finally, the PHIGS workstation’s visual_state attribute is set to Correct.

10.3.2. Update Workstation

Name:
PEXUpdateWorkstation

Request:
wks_id : PHIGS_WKS_ID

Errors:
PhigsWKS

Description:

This request will perform actions identical to PEXRedrawAllStructures on the PHIGS workstation
specified by wks_id if its visual_state attribute is currently set to Deferred or Simulated.

PEX Version 5.0P, 14-September-1990



-- --

-124-

10.3.3. Redraw Clip Region

Name:
PEXRedrawClipRegion

Request:
wks_id : PHIGS_WKS_ID
clip_list : LISTofDEVICE_RECT

Errors:
PhigsWKS

Description:

This request will perform actions similar to the PEXRedrawAllStructures request, except that no PHIGS
workstation state attributes are modified or updated by this request. Rendering will occur only in the
region defined by clip_list. The color stored in entry zero of the wks_id’s color lookup table is used to
clear the region under the rectangles defined by clip_list. The rectangles in clip_list should be non-
overlapping, or the graphics results will be undefined. (If a z-buffering algorithm is used, only those pixels
under the rectangles in the clip list will have their z values initialized.) All of the posted structures for
wks_id are then redrawn, but only pixels under the rectangles in clip_list are affected. Pending changes are
not made current by this request, nor is the visual_state attribute modified.

10.3.4. Execute Deferred Actions

Name:
PEXExecuteDeferredActions

Request:
wks_id : PHIGS_WKS_ID

Errors:
PhigsWKS

Description:

This request causes all the deferred actions on the PHIGS workstation specified by wks_id to be executed.

PEX Version 5.0P, 14-September-1990



-- --

-125-

10.3.5. Set View Priority

Name:
PEXSetViewPriority

Request:
wks_id : PHIGS_WKS_ID
index1 : TABLE_INDEX
index2 : TABLE_INDEX
priority : {Higher, Lower}

Errors:
PhigsWKS, Value

Description:

This request sets the relative priorities of entries in wks_id’s current view table. The priority of view table
entry index1 with respect to view table entry index2 is set to the next Higher or Lower priority. These
priorities are used to determine the order in which view table entries are tested when selecting the inverse
viewing transformation to use for transformation from device coordinates to world coordinates.

10.3.6. Set Display Update Mode

Name:
PEXSetDisplayUpdateMode

Request:
wks_id : PHIGS_WKS_ID
display_update : DISPLAY_UPDATE

Errors:
PhigsWKS, Value

Description:

This request sets the display_update attribute of the PHIGS workstation resource specified by wks_id. This
attribute defines how changes to the display surface will be visualized. The list of permissible display
update modes is defined in the "Extension Information" section that describes enumerated types. |

If double buffering is enabled (see PEXSetWKSBufferMode), the display update mode affects which |
buffer is rendered into. If the display update mode is VisualizeEach or VisualizeWhenever, output |
primitives are rendered into the back (undisplayed) buffer while the structure network is being traversed. |
When the traversal is complete, the front and back buffers are swapped, so the rendered image is displayed. |
If the display update mode is VisualizeEasy or SimulateSome, output primitives are always rendered into |
the front (displayed) buffer. If the display update mode is VisualizeNone, output primitives are not |
rendered to either buffer.

PEX Version 5.0P, 14-September-1990



-- --

-126-

10.3.7. Map DC to WC

Name:
PEXMapDCtoWC

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
dc_points : LISTofDEVICE_COORD

Reply:
wc_points : LISTofCOORD_3D
view_index : TABLE_INDEX

Errors:
PhigsWKS, FloatingPointFormat

Description:

This request maps the device coordinate points in dc_points to the world coordinate points in wc_points
using the PHIGS workstation resource specified by wks_id. (The client must convert pointer position
values in drawable coordinates into device coordinates.) Each view in the PHIGS workstation’s current
view table is checked to see if it contains all the specified device coordinate points. The index of the view
with the highest view transformation input priority that contains all of the points is returned in view_index.
If no view contains all of the points, the index of the view containing the most points is returned. The
points are transformed to world coordinates by passing them through the inverse of the view transform
associated with the view index and are returned in wc_points. Floating point values are passed and will be
returned in the floating point format specified by fp_format. Points that are clipped (outside the viewport) |
will not be transformed and returned in the wc_points list, so the number of points returned may be less
than the number sent.

10.3.8. Map WC to DC

Name:
PEXMapWCtoDC

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
wc_points : LISTofCOORD_3D
view_index : TABLE_INDEX

Reply:
dc_points : LISTofDEVICE_COORD

Errors:
PhigsWKS, FloatingPointFormat

Description:

This request maps the world coordinate points in wc_points to the device coordinate points in dc_points
using the PHIGS workstation resource specified by wks_id and the view specified by view_index. The
points are transformed to device coordinates by passing them through the view transform associated with
the view_index. Floating point values sent and received will be in the floating point format specified by
fp_format. Points that are clipped will not be returned in the dc_points list, so the number of points
returned may be less than the number sent.

PEX Version 5.0P, 14-September-1990



-- --

-127-

10.4. PHIGSWorkstation Update

This section defines requests that can be used to set "requested" values for PHIGS workstation resources.

10.4.1. Set View Representation

Name:
PEXSetViewRep

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
view_rep : VIEW_REP

Errors:
PhigsWKS, FloatingPointFormat, Alloc

Description:

This request sets the requested values of the specified view table entry of the view table in the PHIGS |
workstation specified by wks_id to the view representation indicated by view_rep. The view_update |
attribute in the PHIGS workstation is set to Pending if the change cannot be visualized immediately; |
otherwise it is set to NotPending. If the view_update attribute is NotPending, the current view table entry |
is set to the requested values; otherwise the current values are not changed until the PHIGS workstation is |
updated.

10.4.2. Set Workstation Window

Name:
PEXSetWKSWindow

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
NPC_subvolume : NPC_SUBVOLUME

Errors:
PhigsWKS, FloatingPointFormat

Description:

This request sets the req_NPC_subvolume of the PHIGS workstation specified by wks_id to the values in |
NPC_subvolume. The wks_update attribute in the PHIGS workstation is set to Pending if the change |
cannot be visualized immediately; otherwise it is set to NotPending. If the wks_update attribute is |
NotPending, the cur_NPC_subvolume is set to the requested values; otherwise the current values are not |
changed until the PHIGS workstation is updated.

PEX Version 5.0P, 14-September-1990



-- --

-128-

10.4.3. Set Workstation Viewport

Name:
PEXSetWKSViewport

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
viewport : VIEWPORT

Errors:
PhigsWKS, FloatingPointFormat, Value |

Description: |

This request sets the req_wks_viewpt of the PHIGS workstation specified by wks_id to the values in |
viewport. The wks_update attribute in the PHIGS workstation is set to Pending if the change cannot be |
visualized immediately; otherwise it is set to NotPending. If the wks_update attribute is NotPending, the |
cur_wks_viewpt is set to the requested values; otherwise the current values are not changed until the |
PHIGS workstation is updated.

10.4.4. Set HLHSRMode

Name:
PEXSetHLHSRMode

Request:
wks_id : PHIGS_WKS_ID
mode : HLHSR_MODE

Errors:
PhigsWKS, Value

Description:

This request sets the req_HLHSR_mode of the PHIGS workstation specified by wks_id to the values in |
mode. If the PHIGS workstation’s display_surface attribute is Empty, or if the dynamic modification for its
HLHSR_mode is IMM, its cur_HLHSR_mode attribute is modified with the value contained in mode and its |
HLHSR_update is set to NotPending; otherwise, its HLHSR_update is set to Pending and the current value |
is not changed until the PHIGS workstation is updated.

PEX Version 5.0P, 14-September-1990



-- --

-129-

10.4.5. Set Buffer Mode

Name:
PEXSetWKSBufferMode

Request:
wks_id : PHIGS_WKS_ID
buffer_mode : BUFFER_MODE

Errors:
PhigsWKS, Value, Alloc

Description:

This request sets the req_buffer_mode of the PHIGS workstation specified by wks_id to the values in |
buffer_mode. If the PHIGS workstation’s display_surface attribute is Empty, or if the dynamic |
modification for its buffer_mode is IMM, its cur_buffer_mode attribute is modified with the value contained |
in buffer_mode and its buffer_update is set to NotPending; otherwise, its buffer_update is set to Pending |
and the current value is not changed until the PHIGS workstation is updated. |

Buffer_mode may be one of the constants Single (rendering is to be single-buffered) or Double (rendering
is to be double-buffered). An Alloc error will be returned if the requested mode is Double and the server
cannot allocate any more image buffers.

PEX Version 5.0P, 14-September-1990



-- --

-130-

10.5. Posting/Unposting Structures |

This section describes the requests that can be used to post and unpost structures on a PHIGS workstation resource.

10.5.1. Post Structure

Name:
PEXPostStructure

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
s_id : STRUCTURE_ID
priority : FLOAT

Errors:
PhigsWKS, Structure, FloatingPointFormat

Description:

This request adds the structure specified by s_id to the list of posted structures in the PHIGS workstation
wks_id. A priority is also provided to indicate the priority of the newly-posted structure with respect to the
structures already in the posted structure list. If multiple structures are posted for display to the same
display space location, the implementation will ensure the display of the higher priority structure. If two
structures have the same priority, the last posted structure has the higher priority. If s_id is not a valid
structure resource ID, the request is ignored, and an error is generated.

10.5.2. Unpost Structure

Name:
PEXUnpostStructure

Request:
wks_id : PHIGS_WKS_ID
s_id : STRUCTURE_ID

Errors:
PhigsWKS, Structure

Description:

This request removes the structure specified by s_id from wks_id’s posted structure list. If s_id is not found
in the posted structure list, the request is ignored, and an error is generated.

PEX Version 5.0P, 14-September-1990



-- --

-131-

10.5.3. Unpost All Structures

Name:
PEXUnpostAllStructures

Request:
wks_id : PHIGS_WKS_ID

Errors:
PhigsWKS

Description:

This request removes all structures from wks_id’s posted structure list.

10.5.4. Get PHIGSWorkstation Postings

Name:
PEXGetWKSPostings

Request:
s_id : STRUCTURE_ID

Reply:
wks_id : LISTofPHIGS_WKS_ID

Errors:
Structure

Description:

This request returns a list of all of the PHIGS workstation resources to which s_id has been posted.

PEX Version 5.0P, 14-September-1990



-- --

-132-

11. Picking

The discussion of picking includes both pick device descriptors, which are found in PHIGS workstation resources,
and pick measures, which are themselves resources. PEX currently provides no support for picking of client-side
structure networks.

11.1. Pick Device Descriptors

Each PHIGS workstation resource maintains a list of pick device descriptors. Each entry in this list maintains state
values for a particular type of pick device, such as a mouse or a 3D tablet. Together, the entries in the pick device
descriptor list maintain state values for all of the pick devices that are supported by the workstation resource. This
list of values can be set or inquired for each of the supported pick devices.

Two of the pick device descriptor components are name set resource IDs. If a name set is created, bound to a pick |
device descriptor, and then freed, the contents of the name set will remain, since it is still being referenced by the
pick device descriptor. However, when a pick device descriptor is queried, the value AlreadyFreed will be returned
for the name set ID, since it no longer has a valid resource ID by which it can be referenced.

The pick device descriptor components, in order, are listed in the following table. The abbreviation "pick dev. dep."
stands for "pick-device-dependent", meaning that the default value is determined by the pick device type. The
abbreviation "imp. dep." means that the default value is implementation-dependent.

Attribute Name Data Type Default Value
pick_status {NoPick, Ok} NoPick
pick_path LISTofPICK_ELEMENT_REF Null
pick_path_order {TopFirst, BottomFirst} TopFirst
pick_inclusion NAME_SET_ID Null
pick_exclusion NAME_SET_ID Null
pick_data_rec LISTofCARD8 pick dev. dep.
prompt_echo_type PROMPT_ECHO_TYPE pick dev. dep.
echo_volume VIEWPORT {imp. dep., imp. dep., True}
echo_switch {NoEcho, Echo} NoEcho

The components of the pick device descriptor are defined as follows:

pick_status
This attribute contains the initial pick status that will be bound to a pick measure resource.

pick_path
This attribute contains the initial pick path that will be bound to a pick measure resource.

pick_path_order
This attribute specifies the order in which elements of the picked path are to be written into a pick measure
resource. If the order is TopFirst, elements of the pick measure’s picked_path attribute will be listed in the
order they would have been encountered during a traversal, while if the order is BottomFirst they will be
listed in the opposite order.

pick_inclusion
This attribute specifies the resource ID of the name set resource that is to be used as the pick inclusion filter
during picking operations.

pick_exclusion
This attribute specifies the resource ID of the name set resource that is to be used as the pick exclusion filter

PEX Version 5.0P, 14-September-1990



-- --

-133-

during picking operations.

pick_data_rec
This attribute contains a pick-device-dependent data record used to initialize a pick measure resource when it
is created.

prompt_echo_type
This attribute contains an enumerated type value that specifies the prompt/echo type to be used during picking
operations. The allowable types are described in the "Extension Information" section.

echo_volume
This attribute specifies where prompting and/or echoing is to occur. The default is that the echo volume will
be defined to be the size of the drawable that was bound to the the PHIGS workstation resource at the time it
was created.

echo_switch
This attribute specifies the initial echo state for a pick measure.

The requests in this section allow clients to set and inquire the values of pick device descriptors that are stored in a *
PHIGS workstation resource.

PEX Version 5.0P, 14-September-1990



-- --

-134-

11.1.1. Get Pick Device Descriptor

Name:
PEXGetPickDevice

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
dev_type : PICK_DEVICE_TYPE
item_mask : BITMASK

Reply:
item_list : LISTofVALUE

Errors:
PhigsWKS, Value, FloatingPointFormat

Description:

This request will return components of a pick descriptor for the PHIGS workstation resource specified by
wks_id. The descriptor returned will be the currently-defined descriptor for the pick device of the type
specified by dev_type. The item_mask specifies which components are to be inquired and returned. The
specified attributes of the pick device descriptor will be returned in item_list. Floating point values in
item_list will be returned in the floating point format specified in fp_format. |

11.1.2. Change Pick Device Descriptor

Name:
PEXChangePickDevice

Request:
fp_format : FLOAT_FORMAT
wks_id : PHIGS_WKS_ID
dev_type : PICK_DEVICE_TYPE
item_mask : BITMASK
item_list : LISTofVALUE

Errors:
PhigsWKS, Value, FloatingPointFormat, Path, NameSet

Description:

This request will modify components of a pick descriptor for the PHIGS workstation resource specified by
wks_id. The descriptor to be modified will be the currently-defined descriptor for the pick device of the
type specified by dev_type. The item_mask specifies which components are to be changed. The specified
attributes of the pick device descriptor will be set to the values contained in item_list. Floating point values
in item_list will be in the floating point format specified in fp_format. |

PEX Version 5.0P, 14-September-1990



-- --

-135-

11.2. Pick Measure Resource Management

A pick measure resource must be created to actually perform a pick operation. A pick device type is specified at the
time a pick measure resource is created in order to provide the parameters for the picking operation. The pick
measure resource accepts input in the form of input records which are defined for each type of pick device. When a
pick measure resource is passed a valid input record, its attributes will be updated. Operations on a pick measure
resource are potentially lengthy since a great number of structure elements may have to be processed in order to
produce the pick results.

The pick measure resource components, in order, are listed in the following table. The abbreviation "from wks"
indicates that the default value is inherited from the pick device descriptor stored in the PHIGS workstation resource
when the pick measure is created.

Attribute Name Data Type Default Value
pick_status {Ok, NoPick} from wks
picked_prim LISTofPICK_ELEMENT_REF from wks

The attributes of the pick measure resource are defined as follows:

pick_status
This attribute contains the result of the last update operation that was performed. It is set to Ok if a primitive
was successfully picked, and NoPick if the pick operation was unsuccessful.

picked_prim
This attribute contains the path of the structure element that was picked as a result of the last update
operation.

The pick measure is an X11 resource and carries all of the responsibilities and access rights of X11 resources. The
requests in this section manage the creation and freeing of pick measures.

PEX Version 5.0P, 14-September-1990



-- --

-136-

11.2.1. Create Pick Measure

Name:
PEXCreatePickMeasure

Request:
pm_id : PICK_MEASURE_ID
wks_id : PHIGS_WKS_ID
dev_type : PICK_DEVICE_TYPE

Errors:
IDChoice, PhigsWKS, Alloc, Value

Description:

This request creates a pick measure resource of the type specified by dev_type. The resource ID of the pick
measure is specified by pm_id. The newly-created pick measure is initialized with the values contained in
the appropriate pick device descriptor stored in the PHIGS workstation resource specified by wks_id.

11.2.2. Free Pick Measure

Name:
PEXFreePickMeasure

Request:
pm_id : PICK_MEASURE_ID

Errors:
PickMeasure

Description:

This request deletes the pick measure resource and frees the storage associated with it.

PEX Version 5.0P, 14-September-1990



-- --

-137-

11.3. Pick Measure Inquiry

The requests in this section can be used to inquire pick measure attributes.

11.3.1. Get Pick Measure Attributes

Name:
PEXGetPickMeasure

Request:
pm_id : PICK_MEASURE_ID
item_mask : BITMASK

Reply:
item_list : LISTofVALUE

Errors:
PickMeasure, Value

Description:

This request will return components of the pick measure specified by pm_id. The item_mask specifies
which components are to be inquired and returned. The specified attributes of the pick measure will be
returned in item_list.

11.4. Pick Operations

These request cause pick operations to occur.

11.4.1. Update Pick Measure

Name:
PEXUpdatePickMeasure

Request:
pm_id : PICK_MEASURE_ID
input_record : LISTofCARD8

Errors:
PickMeasure, Path

Description:

This request will update the pick measure specified by pm_id using the information found in input_record.
If this update causes a primitive to be picked, the pick measure’s pick_status will be set to Ok and the
picked_prim will be set to the path of the picked primitive. If no primitive was picked, the pick_status will
be set to NoPick.

The data in input_record is dependent on the type of pick device for which the pick measure resource was |
created, that is, the dev_type specified to PEXCreatePickMeasure. PEXGetPickMeasure can be used to |
return the results of a PEXUpdatePickMeasure request. |

PEX Version 5.0P, 14-September-1990



-- --

-138-

The pick measure input data records for the registered pick device types are: |

DC_HitBox : [pick_position : DEVICE_COORD_2D, |
pick_distance : FLOAT] |

NPC_HitVolume : [pick_volume : NPC_SUBVOLUME] |

PEX Version 5.0P, 14-September-1990



-- --

-139-

12. PEX Fonts

The PEX font manipulation mechanisms are the same mechanisms as those used for X11 fonts. The PEX font
resource is very similar to the font resource created by (and managed by) X11. PEX fonts that are used with PEX
stroke precision text contain more functionality than is currently found in X11 fonts. Specifically, stroke precision
text requires scalable and rotatable text fonts. Because of the added capabilities of PEX fonts, PEX has defined its
own PEX font open, close, and query requests. The X11 font manipulation requests and the corresponding PEX
font manipulation requests are listed below:

OpenFont augmented by PEXOpenFont
CloseFont augmented by PEXCloseFont
ListFonts augmented by PEXListFonts
ListFontsWithInfo augmented by PEXListFontsWithInfo
QueryFont augmented by PEXQueryFont
QueryTextExtents augmented by PEXQueryTextExtents

X11 fonts and PEX fonts can be stored in the same location on the server. PEX uses the X11 font path in order to
find where PEX font files are located. (The X11 request SetFontPath is used to set the current font path and the
X11 request GetFontPath is used to query the current font path.)

PEX Version 5.0P, 14-September-1990



-- --

-140-

12.1. PEX Font Resource Management

The PEX font is an X11 resource and carries all of the responsibilities and access rights of X11 resources. These
requests manage the opening and closing of PEX font resources.

12.1.1. Open PEX Font

Name:
PEXOpenFont

Request:
f_id : PEX_FONT_ID
name : STRING

Errors:
PEXFont, IDChoice, Alloc

Description:

This request loads the specified PEX font, if necessary, and associates identifier f_id with it. The font name
should use the ISO Latin-1 encoding, and upper/lower case does not matter. PEX fonts are not associated
with a particular screen, and can be used with any renderer or PHIGS workstation resources. An error will
be generated if the specified font is not "PEX usable", that is, it is not capable of supporting the full range
of PEX text attributes.

12.1.2. Close PEX Font

Name:
PEXCloseFont

Request:
f_id : PEX_FONT_ID

Errors:
PEXFont

Description:

This request deletes the association between the resource ID and the PEX font. The PEX font itself will be
freed when no other resource references it.

PEX Version 5.0P, 14-September-1990



-- --

-141-

12.2. PEX Font Inquiry

The PEX font requests generate replies with logical information specific to a font. The information is encoded in
the following data structures.

PEX_FONTPROP is defined as:

name : ATOM
value : CARD32

PEX_FONTINFO is defined as:

first_glyph : CARD32
last_glyph : CARD32
default_glyph : CARD32
all_glyphs_exist : BOOLEAN
stroke_font : BOOLEAN
properties : LISTofPEX_FONTPROP

The first_glyph, last_glyph, and default_glyph are indices to the first glyph, last glyph, and default glyph of the font.
The default_glyph specifies the glyph that will be displayed when an undefined or non-existent glyph is used. |
Default_glyph may specify a nonexistent glyph. In this case, if a client tries to display an undefined or non-existent |
glyph, nothing is drawn by the server (rather than having a default glyph drawn). If all_glyphs_exist is True, then all |
glyphs within the range of first_glyph and last_glyph have non-zero extents. Stroke_font is a flag indicating if the
font is a PEX font and is provided so that the client can build font groups that all have the same text precision.

A font is not guaranteed to have any properties. Whether a property value is a signed or unsigned, and what units it
is in must be derived from a priori knowledge of the property. It is strongly recommended that all fonts have at least
a CHARSET_REGISTRY property (e.g., "ISO8859") and a CHARSET_ENCODING property (e.g., "1").

PEX Version 5.0P, 14-September-1990



-- --

-142-

12.2.1. Query PEX Font

Name:
PEXQueryFont

Request: *
f_id : PEX_FONT_ID

Reply:
font_info : PEX_FONTINFO

Errors:
PEXFont |

Description:

This request generates a reply which contains the logical information about a PEX font.

12.2.2. List PEX Fonts

Name:
PEXListFonts

Request:
pattern : STRING
max_names : CARD16

Reply:
font_names : LISTofSTRING

Errors:
None

Description:

Like X11 ListFonts except that this request only returns the names of fonts that can support the full range
of PEX text attributes (i.e., those fonts that are "PEX usable"). This list may or may not contain some of
the same fonts returned by the X11 ListFonts request. This request returns a list of at most max_names
entries, each of which contains information about a font matching the pattern. Pattern is a string that uses
the ISO Latin-1 encoding, and upper/lower case does not matter. In the pattern, the ’?’ character (octal
value 77) will match any single character, and the character ’*’ (octal value 52) will match any number of
characters. The returned names are in lower case, and are also ISO Latin-1 encoded strings.

PEX Version 5.0P, 14-September-1990



-- --

-143-

12.2.3. List PEX Fonts with Info

Name:
PEXListFontsWithInfo

Request: *
pattern : STRING
max_names : CARD16

Reply:
font_names : LISTofSTRING
fonts : LISTofPEX_FONTINFO

Errors:
None |

Description:

Like X11 ListFontsWithInfo except that this request only returns information about fonts that can support
the full range of PEX text attributes (i.e., those fonts that are "PEX usable"). This list may or may not
contain some of the same fonts returned by the X11 ListFonts request. This request returns a list of at
most max_names entries, each of which contains information about a font matching the pattern. Pattern is
a string that uses the ISO Latin-1 encoding, and upper/lower case does not matter. In the pattern, the ’?’
character (octal value 77) will match any single character, and the character ’*’ (octal value 52) will match
any number of characters. The returned names are in lower case, and are also ISO Latin-1 encoded strings.

The information returned for each font is identical to what PEXQueryFont would return.

PEX Version 5.0P, 14-September-1990



-- --

-144-

12.2.4. Query PEX Text Extents

Name:
PEXQueryTextExtents

Request:
fp_format : FLOAT_FORMAT
resource_id : RESOURCE_ID
font_group : TABLE_INDEX
path : CARD16
expansion : FLOAT
spacing : FLOAT
height : FLOAT
alignment : TEXT_ALIGNMENT
strings : LISTofISTRING

Reply:
extents : LISTofEXTENT_INFO

Errors:
FloatingPointFormat, Value, Match

Description:

This request generates a reply which contains extent information in the local 2D text coordinate system for
each of the specified strings. If resource_id is a renderer or PHIGS workstation resource, the TextFont
table used to perform the extents computation will be the TextFont table associated with the renderer or
PHIGS workstation. If resource_id is a lookup table resource of type TextFont, it is used directly.
Font_group provides the index of the entry that is to be used to obtain the font group.

Stroke precision is assumed. The text position is (0,0) in the local 2D text coordinate system.
Concat_point returns the point where the next glyph should go if the string is to be extended. This position
is given in the 2D text coordinate system. (A suitable modeling transformation to account for the character
up vector will still need to be applied by the client.)

If a specified font has no defined default_glyph (that is, if default_glyph refers to a non-existent glyph), |
then undefined glyphs in strings are taken to have all zero metrics.

PEX Version 5.0P, 14-September-1990



-- --

-145-

Appendix A: Definition of Standard PEX Subsets

PEXGetExtensionInfo returns a 32-bit value (subset_info) containing information about whether the PEX server is
a full PEX implementation or one of the defined standard subsets. The top 16 bits of this 32-bit value are reserved
for use by vendors. The bottom 16 bits contain information about how fully the PEX extension implementation
supports the PEX protocol. Only two standard PEX subsets are currently defined. If all 16 low-order bits of
subset_info are zero, the extension can be assumed to be a complete PEX implementation. If the lowest-order bit of
subset_info is a one, then the PEX extension is an "immediate rendering only" implementation. If the next-to-
lowest-order bit of subset_info is a one, then the PEX extension is a "PHIGS workstation only" implementation. A
PEX implementation is not allowed to return with both of these bits set. Requests that appear in neither subset (e.g.,
PEXRenderNetwork) are guaranteed to be implemented only in a full PEX implementation. If a server is sent a |
request that is not in the PEX subset supported by that server, it will return a Request error.

PHIGS Workstation Only Subset

A "PHIGS workstation only" subset should fully support the following PEX resources:

lookup tables
name sets
structures
search contexts
PHIGS workstations
pick measures
PEX fonts

and all of the output commands. To qualify as a PHIGS workstation only PEX subset, an implementation must
support at least the protocol requests in the following list. Protocol requests that are not supported should return an
Implementation error.

PEXGetExtensionInfo PEXCreateNameSet
PEXGetEnumeratedTypeInfo PEXCopyNameSet
PEXGetImpDepConstants PEXFreeNameSet

PEXGetNameSet
PEXCreateLookupTable PEXChangeNameSet
PEXCopyLookupTable
PEXFreeLookupTable PEXCreateSearchContext
PEXGetTableInfo PEXCopySearchContext
PEXGetPredefinedEntries PEXFreeSearchContext
PEXGetDefinedIndices PEXGetSearchContext
PEXGetTableEntry PEXChangeSearchContext
PEXGetTableEntries PEXSearchNetwork
PEXSetTableEntries
PEXDeleteTableEntries

PEXCreatePhigsWKS
PEXCreateStructure PEXFreePhigsWKS
PEXCopyStructure PEXGetWKSInfo
PEXDestroyStructures PEXGetDynamics
PEXGetStructureInfo PEXGetViewRep
PEXGetElementInfo PEXRedrawAllStructures
PEXGetStructuresInNetwork PEXUpdateWorkstation
PEXGetAncestors PEXRedrawClipRegion

PEX Version 5.0P, 14-September-1990



-- --

-146-

PEXGetDescendants PEXExecuteDeferredActions
PEXFetchElements PEXSetViewPriority
PEXSetEditingMode PEXSetDisplayUpdateMode
PEXSetElementPointer PEXMapDCtoWC
PEXSetElementPointerAtLabel PEXMapWCtoDC
PEXElementSearch PEXSetViewRep
PEXStoreElements PEXSetWKSWindow
PEXDeleteElements PEXSetWKSViewport
PEXDeleteElementsToLabel PEXSetHLHSRMode
PEXDeleteElementsBetweenLabels PEXSetWKSBufferMode
PEXCopyElements PEXPostStructure
PEXChangeStructureReferences PEXUnpostStructure

PEXUnpostAllStructures
PEXGetWKSPostings

PEXGetPickDevice PEXQueryFont
PEXChangePickDevice PEXListFontsWithInfo
PEXCreatePickMeasure PEXQueryTextExtents
PEXFreePickMeasure PEXListFonts
PEXGetPickMeasure PEXOpenFont
PEXUpdatePickMeasure PEXCloseFont

PEX Version 5.0P, 14-September-1990



-- --

-147-

Immediate Rendering Only Subset

An "immediate rendering only" subset should fully support the following PEX resources:

lookup tables
name sets
pipeline contexts
renderers
PEX fonts

and all of the output commands (the "execute structure" output command will be treated as a no-op). To qualify as
an immediate rendering only PEX subset, an implementation must support at least the protocol requests in the
following list. Protocol requests that are not supported should return an Implementation error.

PEXGetExtensionInfo PEXCreateRenderer
PEXGetEnumeratedTypeInfo PEXFreeRenderer
PEXGetImpDepConstants PEXChangeRenderer

PEXGetRendererAttributes
PEXGetRendererDynamics

PEXCreateLookupTable PEXBeginRendering
PEXCopyLookupTable PEXEndRendering
PEXFreeLookupTable PEXBeginStructure
PEXGetTableInfo PEXEndStructure
PEXGetPredefinedEntries PEXRenderOutputCommands
PEXGetDefinedIndices
PEXGetTableEntry PEXCreateNameSet
PEXGetTableEntries PEXCopyNameSet
PEXSetTableEntries PEXFreeNameSet
PEXDeleteTableEntries PEXGetNameSet

PEXChangeNameSet
PEXCreatePipelineContext
PEXCopyPipelineContext PEXQueryFont
PEXFreePipelineContext PEXListFontsWithInfo
PEXGetPipelineContext PEXQueryTextExtents
PEXChangePipelineContext PEXListFonts

PEXOpenFont
PEXCloseFont

PEX Version 5.0P, 14-September-1990



-- --

-148-

Appendix B: Minimum Support for PHIGS/PHIGS+

In order to fully support a PHIGS client-side implementation and the targeted PHIGS+ functionality, a PEX
extension implementation must meet or exceed the following support criteria. Other than the minimum support
criteria listed here and the subset information listed in Appendix A, a PEX extension implementation must fully
support the functionality described in the PEX Protocol Specification document.

Enumerated Types
MarkerType at least types 1-5 (Dot, Cross, Asterisk, Circle, X) must be supported
ATextStyle at least types 1-2 (NotConnected, Connected) must be supported
InteriorStyle at least types 1,2,5 (Hollow, Solid, Empty) must be supported
HatchStyle it is not required that an implementation support any hatch styles
LineType at least types 1-4 (Solid, Dashed, Dotted, DashDot) must be supported
SurfaceEdgeType at least type 1 (Solid) must be supported
PickDeviceType at least pick device type 1 (DC_HitBox) must be supported (for full

implementation or for the "PHIGS workstation only" subset)
PolylineInterpMethod at least type 1 (None) must be supported
CurveApproxMethod at least one of types 1-7 must be supported
ReflectionModel at least type 1 (NoShading) must be supported
SurfaceInterpMethod at least type 1 (None) must be supported
SurfaceApproxMethod at least one of types 1-7 must be supported
TrimCurveApproxMethod at least one of types 1-3 must be supported
ModelClipOperator at least types 1-2 (Replace, Intersection) must be supported
LightType at least one of types 1-4 (Ambient, WCS_Vector, WCS_Point, WCS_Spot)

must be supported
ColorType type 0 (Indexed) and at least one of types 1-6 (RGBFloat, CIEFloat,

HSVFloat, HLSFloat, RGBInt8, RGBInt16) must be supported
FloatFormat at least one of types 1-2 (IEEE_754_32, DEC_F_Floating) must be supported
HLHSRMode at least type 1 (Off) and one other type (ZBuffer, Painters, Scanline,

HiddenLineOnly, or an implementation-dependent type) must be supported
PromptEchoType at least type 1 (EchoPrimitive) must be supported
DisplayUpdateMode at least type 1 (VisualizeEach) must be supported
ColorApproxType at least one of types 1-2 {ColorSpace, ColorRange} must be supported
ColorApproxModel at least one of types 1-5 {RGB, HSV, HLS, CIE, YIQ} must

be supported
RenderingColorModel at least type 0 (implementation-dependent) must be supported
ParametricSurfaceCharacteristics at least type 1 (None) must be supported
BufferMode it is not required that an implementation support double buffering
GDP it is not required that an implementation support any GDPs |
GDP3 it is not required that an implementation support any GDP3s |
GSE it is not required that an implementation support any GSEs |

Output Primitive Attributes
marker_scale marker scale factors other than 1.0 may be ignored
text_precision all types (Stroke, Char, String) must be supported
char_expansion character expansion other than 1.0 may be ignored
char_height character height other than 0.01 may be ignored
atext_height annotation text character height other than 0.01 may be ignored
line_width line widths other than 1.0 may be ignored
interior_style_index this attribute may be ignored if neither Pattern nor Hatch style is supported
reflection_attr transmission coefficient attribute may be ignored

PEX Version 5.0P, 14-September-1990



-- --

-149-

bf_interior_style_index this attribute may be ignored if neither Pattern nor Hatch style is supported
bf_reflection_attr transmission coefficient attribute may be ignored
pattern_size this attribute may be ignored if Pattern style is not supported
pattern_ref_pt this attribute may be ignored if Pattern style is not supported
pattern_ref_vec1 this attribute may be ignored if Pattern style is not supported
pattern_ref_vec2 this attribute may be ignored if Pattern style is not supported
surface_edge_width surface edge widths other than 1.0 may be ignored
model_clip_volume must support the combining of at least six halfspaces to compute the

modeling clipping volume
depth_cue attributes depth cue attributes other than the default (depth cue off) may be ignored
HLHSR_identifier is ignored for the currently-registered HLHSR modes
specific GSEs may be ignored |

Output Primitives
cell arrays may be simulated by drawing the outline of the cell array
specific GDPs may be ignored |

Lookup Tables
LineBundle must support at least 20 entries
MarkerBundle must support at least 20 entries
TextBundle must support at least 20 entries
InteriorBundle must support at least 20 entries
EdgeBundle must support at least 20 entries
Pattern must support at least 10 entries (if interior style Pattern supported)
Color must support at least 2 entries
TextFont must support at least 2 entries
View must support at least 6 entries
Light must support at least 5 entries
DepthCue must support at least 6 entries
ColorApprox must support at least 1 entry

Miscellaneous
fonts an implementation need not support drawing text primitives with X11 fonts

PEX Version 5.0P, 14-September-1990



-- --

-150-

Appendix C: Definition of PEX Errors

PEXGetExtensionInfo
none

PEXGetEnumeratedTypeInfo
Drawable: specified drawable resource ID is invalid
Value: specified enumerated type number is invalid

PEXGetImpDepConstants
Value: a specified constant name is invalid
FloatingPointFormat: device does not support the specified fp format
Drawable: specified drawable resource ID is invalid

PEXCreateLookupTable
IDChoice: ID already in use or not in range assigned to client
Drawable: specified drawable resource ID is invalid
Value: table_type value does not name a valid table type
Alloc: server failed to allocate the requested resource
LookupTable: table type not supported by implementation

PEXCopyLookupTable
LookupTable: either src_lut_id or dest_lut_id is an invalid resource ID
LookupTable: table type not supported by implementation
Match: src_lut_id and dest_lut_id must have been created for use on the

same class of drawables, and must be the same type of lookup
table

PEXFreeLookupTable
LookupTable: lut_id contains an invalid lut resource ID

PEXGetTableInfo
Drawable: specified drawable resource ID is invalid
Value: table_type value does not name a valid table type

PEXGetPredefinedEntries
Drawable: specified drawable resource ID is invalid
Value: table_type value does not name a valid table type
Value: start < min predefined entry
Value: start + count > max predefined entry
Value: entry 0 not valid for this table type
FloatingPointFormat: device does not support the specified fp format
LookupTable: table type not supported by implementation

PEXGetDefinedIndices
LookupTable: lut_id contains an invalid lut resource ID
LookupTable: table type not supported by implementation

PEXGetTableEntry
LookupTable: lut_id contains an invalid lut resource ID
LookupTable: table type not supported by implementation
FloatingPointFormat: device does not support the specified fp format

PEX Version 5.0P, 14-September-1990



-- --

-151-

Value: entry 0 not valid for this table type

PEXGetTableEntries
LookupTable: lut_id contains an invalid lut resource ID
LookupTable: table type not supported by implementation
Value: start + count is greater than 65535
Value: entry 0 not valid for this table type
FloatingPointFormat: device does not support the specified fp format

PEXSetTableEntries
LookupTable: lut_id contains an invalid lut resource ID
LookupTable: table type not supported by implementation
Value: start + count is greater than 65535
Value: illegal value in one of the fields of a table entry
Value: entry 0 not valid for this table type
FloatingPointFormat: device does not support the specified fp format
ColorType: device does not support the specified color type
ColorType: color type may not be Indexed for color lookup table
Alloc: table is full

PEXDeleteTableEntries
LookupTable: lut_id contains an invalid lut resource ID
LookupTable: table type not supported by implementation
Value: start + count is greater than 65535
Value: entry 0 not valid for this table type

PEXCreatePipelineContext
IDChoice: ID already in use or not in range assigned to client
Value: an item in the item_list is out of range
Value: illegal bit set in item mask parameter
FloatingPointFormat: device does not support the specified fp format
ColorType: device does not support the specified color type
Alloc: server failed to allocate the requested resource

PEXCopyPipelineContext
PipelineContext: pc_id contains an invalid pipeline context ID
Value: illegal bit set in item mask parameter

PEXFreePipelineContext
PipelineContext: pc_id contains an invalid pipeline context ID

PEXGetPipelineContext
PipelineContext: pc_id contains an invalid pipeline context ID
FloatingPointFormat: device does not support the specified fp format
Value: illegal bit set in item mask parameter

PEXChangePipelineContext
PipelineContext: pc_id contains an invalid pipeline context ID
Value: an item in the item_list is out of range
Value: illegal bit set in item mask parameter
FloatingPointFormat: device does not support the specified fp format
ColorType: device does not support the specified color type

PEX Version 5.0P, 14-September-1990



-- --

-152-

PEXCreateRenderer
IDChoice: ID already in use or not in range assigned to client
Drawable: specified drawable resource ID is invalid
PipelineContext: specified pipeline context resource ID is invalid
NameSet: a specified name set resource ID is invalid
LookupTable: a specified lookup table resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Value: an item in the item_list is out of range
Value: illegal bit set in item mask parameter
Alloc: server failed to allocate the requested resource
Match: lookup table root/depth does not match example drawable’s root/depth

PEXFreeRenderer
Renderer: specified renderer resource ID is invalid

PEXChangeRenderer
Renderer: specified renderer resource ID is invalid
Match: specified lookup table resource was not created for drawables

of the same root and depth as the specified renderer
Value: an item in the item_list is out of range
Value: illegal bit set in item mask parameter
FloatingPointFormat: device does not support the specified fp format
NameSet: a specified name set resource ID is invalid
LookupTable: a specified lookup table resource ID is invalid
PipelineContext: specified pipeline context resource ID is invalid

PEXGetRendererAttributes
Renderer: specified renderer resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Value: illegal bit set in item mask parameter

PEXGetRendererDynamics
Renderer: specified renderer resource ID is invalid

PEXBeginRendering
Renderer: specified renderer resource ID is invalid
Drawable: specified drawable resource ID is invalid
Match: specified renderer resource was not created for drawables

of the same root and depth as the specified drawable
Alloc: server was unable to allocate the resources necessary to do rendering
RendererState: renderer was already in the Rendering state

PEXEndRendering
Renderer: specified renderer resource ID is invalid

PEXBeginStructure
Renderer: specified renderer resource ID is invalid

PEXEndStructure
Renderer: specified renderer resource ID is invalid
RendererState: no matching begin structure

PEXRenderOutputCommands

PEX Version 5.0P, 14-September-1990



-- --

-153-

Renderer: specified renderer resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
OutputCommand: illegal value in output commands |

PEXRenderNetwork
Renderer: specified renderer resource ID is invalid
Drawable: specified drawable resource ID is invalid
Structure: specified structure resource ID is invalid
RendererState: renderer was already in the Rendering state

PEXCreateStructure
IDChoice: ID already in use or not in range assigned to client
Alloc: server failed to allocate the requested resource

PEXCopyStructure
Structure: specified structure resource ID is invalid

PEXDestroyStructures
Structure: specified structure resource ID is invalid

PEXGetStructureInfo
Structure: specified structure resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Value: illegal bit set in item_mask parameter

PEXGetElementInfo
Structure: specified structure resource ID is invalid
Value: bad value for "whence" parameter
FloatingPointFormat: device does not support the specified fp format

PEXGetStructuresInNetwork
Structure: specified structure resource ID is invalid
Value: bad value for "which" parameter

PEXGetAncestors
Structure: specified structure resource ID is invalid
Value: bad value for "path_part" parameter

PEXGetDescendants
Structure: specified structure resource ID is invalid
Value: bad value for "path_part" parameter

PEXFetchElements
Structure: specified structure resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Value: bad value for "whence" parameter

PEXSetEditingMode
Structure: specified structure resource ID is invalid
Value: bad value for "mode" parameter

PEXSetElementPointer
Structure: specified structure resource ID is invalid

PEX Version 5.0P, 14-September-1990



-- --

-154-

Value: bad value for "whence" parameter

PEXSetElementPointerAtLabel
Structure: specified structure resource ID is invalid
Label: no occurrences of specified label in structure

PEXElementSearch
Structure: specified structure resource ID is invalid
Value: bad value for "whence" or "direction" parameters

PEXStoreElements
Structure: specified structure resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
OutputCommand: illegal value in output commands |

PEXDeleteElements
Structure: specified structure resource ID is invalid
Value: bad value for "whence" parameter

PEXDeleteElementsToLabel
Structure: specified structure resource ID is invalid
Label: no occurrences of specified label in structure
Value: bad value for "whence" parameter

PEXDeleteElementsBetweenLabels
Structure: specified structure resource ID is invalid
Label: no occurrences of specified label in structure

PEXCopyElements
Structure: specified structure resource ID is invalid
Value: bad value for "whence" parameter

PEXChangeStructureReferences
Structure: specified structure resource ID is invalid

PEXCreateNameSet
IDChoice: ID already in use or not in range assigned to client
Alloc: server failed to allocate the requested resource

PEXCopyNameSet
NameSet: specified name set resource ID is invalid

PEXFreeNameSet
NameSet: specified name set resource ID is invalid

PEXGetNameSet
NameSet: specified name set resource ID is invalid

PEXChangeNameSet
NameSet: specified name set resource ID is invalid
Value: bad value for "action" parameter

PEXCreateSearchContext

PEX Version 5.0P, 14-September-1990



-- --

-155-

IDChoice: ID already in use or not in range assigned to client
Value: an item in the item_list is out of range
Value: illegal bit set in item mask parameter
FloatingPointFormat: device does not support the specified fp format
Alloc: server failed to allocate the requested resource
Path: illegal or poorly-formed search path (includes invalid structure

IDs, invalid element offset values) |
NameSet: specified name set resource ID is invalid

PEXCopySearchContext
SearchContext: specified search context resource ID is invalid
Value: illegal bit set in item mask parameter

PEXFreeSearchContext
SearchContext: specified search context resource ID is invalid

PEXGetSearchContext
SearchContext: specified search context resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Value: illegal bit set in item mask parameter

PEXChangeSearchContext
SearchContext: specified search context resource ID is invalid
Value: an item in the item_list is out of range
Value: illegal bit set in item mask parameter
FloatingPointFormat: device does not support the specified fp format
Path: illegal or poorly-formed search path (includes invalid structure

IDs, invalid element offset values) |
NameSet: specified name set resource ID is invalid

PEXSearchNetwork
SearchContext: specified search context resource ID is invalid
Path: illegal or poorly-formed search path (includes invalid structure

IDs, invalid element offset values) |

PEXCreatePhigsWKS
IDChoice: ID already in use or not in range assigned to client
Drawable: specified drawable resource ID is invalid
Match: specified lookup table resource was not created for drawables

of the same root and depth as the specified drawable
Match: specified drawable is not a window or pixmap
LookupTable: a specified lookup table resource ID is invalid
NameSet: a specified name set resource ID is invalid
Alloc: server failed to allocate the requested resource
Alloc: server cannot allocate resources necessary for double-buffering
Value: bad value for buffer_mode parameter

PEXFreePhigsWKS
PhigsWKS: specified PHIGS workstation resource ID is invalid

PEXGetWKSInfo
PhigsWKS: specified PHIGS workstation resource ID is invalid
FloatingPointFormat: device does not support the specified fp format

PEX Version 5.0P, 14-September-1990



-- --

-156-

Value: illegal bit set in item mask parameter

PEXGetDynamics
Drawable: specified drawable resource ID is invalid

PEXGetViewRep
PhigsWKS: specified PHIGS workstation resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Value: specified view table entry is not defined

PEXRedrawAllStructures
PhigsWKS: specified PHIGS workstation resource ID is invalid

PEXUpdateWorkstation
PhigsWKS: specified PHIGS workstation resource ID is invalid

PEXRedrawClipRegion
PhigsWKS: specified PHIGS workstation resource ID is invalid

PEXExecuteDeferredActions
PhigsWKS: specified PHIGS workstation resource ID is invalid

PEXSetViewPriority
PhigsWKS: specified PHIGS workstation resource ID is invalid
Value: bad value for "priority" parameter
Value: specified table entry is not defined

PEXSetDisplayUpdateMode
PhigsWKS: specified PHIGS workstation resource ID is invalid
Value: bad value for "display_update" parameter

PEXMapWCtoDC
PhigsWKS: specified PHIGS workstation resource ID is invalid
FloatingPointFormat: device does not support the specified fp format

PEXMapDCtoWC
PhigsWKS: specified PHIGS workstation resource ID is invalid
FloatingPointFormat: device does not support the specified fp format

PEXSetViewRep
PhigsWKS: specified PHIGS workstation resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Alloc: table is full

PEXSetWKSWindow
PhigsWKS: specified PHIGS workstation resource ID is invalid
FloatingPointFormat: device does not support the specified fp format

PEXSetWKSViewport
PhigsWKS: specified PHIGS workstation resource ID is invalid
FloatingPointFormat: device does not support the specified fp format
Value: bad value for "use_drawable" parameter

PEX Version 5.0P, 14-September-1990



-- --

-157-

PEXSetHLHSRMode
PhigsWKS: specified PHIGS workstation resource ID is invalid
Value: bad value for "mode" parameter

PEXSetWKSBufferMode
PhigsWKS: specified PHIGS workstation resource ID is invalid
Value: bad value for "buffer_mode" parameter
Alloc: server cannot allocate resources necessary for double-buffering

PEXPostStructure
PhigsWKS: specified PHIGS workstation resource ID is invalid
Structure: specified structure resource ID is invalid
FloatingPointFormat: device does not support the specified fp format

PEXUnpostStructure
PhigsWKS: specified PHIGS workstation resource ID is invalid
Structure: specified structure resource ID is invalid

PEXUnpostAllStructures
PhigsWKS: specified PHIGS workstation resource ID is invalid

PEXGetWKSPostings
Structure: specified structure resource ID is invalid

PEXGetPickDevice
PhigsWKS: specified PHIGS workstation resource ID is invalid
Value: bad value for "dev_type" parameter
Value: illegal bit set in item mask parameter
FloatingPointFormat: device does not support the specified fp format

PEXChangePickDevice
PhigsWKS: specified PHIGS workstation resource ID is invalid
Value: bad value for "dev_type" parameter
Value: an item in the item_list is out of range
Value: illegal bit set in item mask parameter
FloatingPointFormat: device does not support the specified fp format
Path: illegal or poorly-formed pick path (includes invalid structure

IDs, invalid element offset values) |
NameSet: a specified name set resource ID is invalid

PEXCreatePickMeasure
IDChoice: ID already in use or not in range assigned to client
PhigsWKS: specified PHIGS workstation resource ID is invalid
Alloc: server failed to allocate the requested resource
Value: bad value for "dev_type" parameter

PEXFreePickMeasure
PickMeasure: specified pick measure resource ID is invalid

PEXGetPickMeasure
PickMeasure: specified pick measure resource ID is invalid
Value: illegal bit set in item mask parameter

PEX Version 5.0P, 14-September-1990



-- --

-158-

PEXUpdatePickMeasure
PickMeasure: specified pick measure resource ID is invalid
Path: illegal or poorly-formed search path (includes invalid structure

IDs, invalid element offset values) |

PEXOpenFont
PEXFont: string does not name a useable PEX font
IDChoice: ID already in use or not in range assigned to client
Alloc: server failed to allocate the requested resource

PEXCloseFont
PEXFont: specified PEX font resource ID is invalid

PEXQueryFont
PEXFont: specified PEX font resource ID is invalid

PEXListFonts *
none

PEXListFontsWithInfo
none |

PEXQueryTextExtents
FloatingPointFormat: device does not support the specified fp format
Value: input text attribute values are illegal or out of range
Value: resource ID does not name a valid renderer, PHIGS workstation

or lookup table
Match: resource ID specifies a table of type other than TextFont

PEX Version 5.0P, 14-September-1990



-- --

-159-

Appendix D: Definition of Table Default Values

If a table entry that is not defined is referenced, the contents of the default table entry will be used. The default
entry for all tables is one, except for the view, depth cue, and color approximation tables whose default entry is zero.
If the contents of the default table entry is not defined, then the default attribute values listed below will be used to
define a default table entry that will be used instead. For each type of table, the attribute name, data type, and
default value are listed. Each PEX implementation should provide documentation describing the choices it made for
those attributes listed as "implementation-dependent".

LineBundle (1..65535, default entry = 1)

line_type LINE_TYPE LineTypeSolid
polyline_interp POLYLINE_INTERP PolylineInterpNone
curve_approx CURVE_APPROX {1, 1.0}†
line_width FLOAT 1.0
line_color COLOR_SPECIFIER {Indexed, 1}

MarkerBundle (1..65535, default entry = 1)

marker_type MARKER_TYPE MarkerAsterisk
marker_scale FLOAT 1.0
marker_color COLOR_SPECIFIER {Indexed, 1}

TextBundle (1..65535, default entry = 1)

text_font_index TABLE_INDEX 1
text_precision TEXT_PRECISION String
char_expansion FLOAT 1.0
char_spacing FLOAT 0.0
text_color COLOR_SPECIFIER {Indexed, 1}

InteriorBundle (1..65535, default entry = 1)

interior_style INTERIOR_STYLE InteriorStyleHollow
interior_style_index TYPE_OR_TABLE_INDEX 1
surface_color COLOR_SPECIFIER {Indexed, 1}
reflection_attr REFLECTION_ATTR {1.0, 1.0, 1.0, 0.0, 0.0, (Indexed, 1)}
reflection_model REFLECTION_MODEL ReflectionNoShading
surface_interp SURFACE_INTERP SurfaceInterpNone
bf_interior_style INTERIOR_STYLE InteriorStyleHollow
bf_interior_style_index TYPE_OR_TABLE_INDEX 1
bf_surface_color COLOR_SPECIFIER {Indexed, 1}
bf_reflection_attr REFLECTION_ATTR {1.0, 1.0, 1.0, 0.0, 0.0, (Indexed, 1)}
bf_reflection_model REFLECTION_MODEL ReflectionNoShading
bf_surface_interp SURFACE_INTERP SurfaceInterpNone
surface_approx SURFACE_APPROX {1, 1.0, 1.0}

† PHIGS+ defines the default curve approximation type to be 1, which is an implementation-dependent method.

PEX Version 5.0P, 14-September-1990



-- --

-160-

EdgeBundle (1..65535, default entry = 1)

surface_edges SWITCH Off
surface_edge_type SURFACE_EDGE_TYPE SurfaceEdgeSolid
surface_edge_width FLOAT 1.0
surface_edge_color COLOR_SPECIFIER {Indexed, 1}

Pattern (1..65535, default entry = 1)

color_type COLOR_TYPE implementation-dependent
numx CARD16 implementation-dependent
numy CARD16 implementation-dependent
colors LISTofCOLOR implementation-dependent

Color (0..65534, default entry = 1)

color_type COLOR_TYPE implementation-dependent
color DIRECT_COLOR implementation-dependent

TextFont (1..65535, default entry = 1)

font LISTofFONT_ID implementation-dependent

View (0..65534, default entry = 0)

clip_flags BITMASK all On
clip_limits NPC_SUBVOLUME (0,0,0),(1,1,1)
orientation MATRIX identity matrix
mapping MATRIX identity matrix

Light (1..65535, default entry = 1)

light_type LIGHT_TYPE implementation-dependent
direction VECTOR_3D implementation-dependent
point COORD_3D implementation-dependent
concentration FLOAT implementation-dependent
spread_angle FLOAT implementation-dependent
attenuation [factor1, factor2 : FLOAT] implementation-dependent
color COLOR_SPECIFIER implementation-dependent

Depending on the type of light, some of the values in a table entry may be ignored. Undefined entries in the
light table that are referenced are treated as lights that are set to Off.

DepthCue (0..65534, default entry = 0)

mode SWITCH Off
front_plane FLOAT implementation-dependent
back_plane FLOAT implementation-dependent
front_scaling FLOAT implementation-dependent
back_scaling FLOAT implementation-dependent
color COLOR_SPECIFIER implementation-dependent

PEX Version 5.0P, 14-September-1990



-- --

-161-

ColorApprox (0..65534, default entry = 0)

type COLOR_APPROX_TYPE implementation-dependent
color_model COLOR_APPROX_MODEL implementation-dependent
max1 CARD16 implementation-dependent
max2 CARD16 implementation-dependent
max3 CARD16 implementation-dependent
mult1 CARD32 implementation-dependent
mult2 CARD32 implementation-dependent
mult3 CARD32 implementation-dependent
weight1 FLOAT implementation-dependent
weight2 FLOAT implementation-dependent
weight3 FLOAT implementation-dependent
base_pixel CARD32 implementation-dependent
dither SWITCH implementation-dependent

It is suggested that PEX implementations provide default entries that correlate with the X definition of
RGB_DEFAULT_MAP for the device. For instance, if a device has eight-bit pixels which index into a 24-bit
hardware colormap, and its notion of an RGB_DEFAULT_MAP is a 6×6×6 color cube encoded in 216
colormap entries starting with cell number 16, then the suggested values might be:

type COLOR_APPROX_TYPE ColorSpace
color_model COLOR_APPROX_MODEL RGB
max1 CARD16 5
max2 CARD16 5
max3 CARD16 5
mult1 CARD32 1
mult2 CARD32 6
mult3 CARD32 36
weight1 FLOAT 1.0
weight2 FLOAT 1.0
weight3 FLOAT 1.0
base_pixel CARD32 16
dither SWITCH Off

PEX Version 5.0P, 14-September-1990


